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FOREWORD

This final report for the Tile Protective System (TPS) Flight

Repair Kit is submitted by Martin Marietta in accordance with

Exhibit A, Statement of Work (SOW) and the Data Requirements
List (DRL) Line Item No. 2 for Contract NASg-15969.
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1.0 INTRODUCTION AND SUMMARY

This program defined a thermal protection system (TPS) flight
repair kit required for use on a flight of the Space Transporta-
tion System (STS-1). Loss of ceramic tiles (TPS) could jeopar-
dize the safety of the crew during the reentry flight phase of
the Shuttle orbiter. Therefore, a means of making TPS repairs
in orbit must be provided for use, if necessary, by _he crew via
extravehicular activity (EVA). The manned maneuvering unit

(MMU) and a work restraint would be used with the flight repair
kit to make the necessary repairs.

Previous NASA activities have led to selection of a cure-in-

place ablator using an applicator/mlxer unit as a repair tech-

nique for full or partial tile damage. For larger area repair,

precured ablator sections will be bonded on using the cure-in-

place ablator as an adhesive and gap filler. If coating repair

is determined to he necessary, an emfttance agent will be used
in a suitable applicator (being developed by NASA).

Martin Marietta's extensive experience using silicone ablators

and man-in-space activities provided us with a good base to per-

form this program. The objective of this program was to define
(i) a cure-in-place ablator, (2) a precured ablator (large-area

application), and (3) packaging design (containers, mixing and
dispensing). Figure I-i presents our two candidate applicator/

mixer concepts (self-contained unit and three-part unit) that

resulted from this flight repair kit conceptual design activity.

Self-ContainedUnit Three-PartUnit

Figure I.-I Candidate Applicator/_zer Concepts

i-i
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The basic program guidel£nea for the ablator evaluat£on and
selection were:

1) Use available "off-the-shelf" silicone-based material or
modification thereof;

2) Satisfy cure-in-space environment, cure time, and tempera-
ture range;

3) Must be compatible with RTV 560 (used to bond tile);

4) Require minimal substrate preparation;

5) Have low density;

6) Cure-in-place ablator must be compatible with precured
ablator;

7) Must provide satisfactory thermal and structural performance;

8) Must be compatible with cold-soaked conditions.

The basic program guidelines for design of the packaging con-
tainer and elements (mixing, dispensing and adhesive spreading
devices) were (I) satisfy storage capability, (2) satisfy
Shuttle-induced environment, and (3) satisfy crew EVA handling
interfaces with MMU.

The key des_.gn features of our flight repair kit and the asso-
ciated operational use are:

l) The selected ablator materials have demonstrated superior
structural strength, thermal performance in plasma arc
testing, and excellent mixing and curing in a vacuum chamber;

2) The two applicator/mixer designs (for cure-in-place mat-
erial) are straightforward and have been demonstrated in
functional mockup tests and by NASA on the KC-135 (zero-$
testing);

3) Mixing can be done in the container and was actually done in
the functional mockup using both real and simulated
catalysts.

Our program plan shown in Figure 1-2 comprised an ll-veek tech-
nical effort, including a final briefing, a final report, and
ablator materials and two applicator/mixer functional mockups
delivered to NASA-jSC. The four program tasks with 13 subtasks
presented in Figure 1-2 are sunnarized in the following
subsections.

1-2
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1.1 TASK 1, CURE-IN-PLACE MATERIAL SELECTION

We defined the requirements and proposed three candidate abla-

tors for evaluation. We conducted an investigation of cure
characteristics, mixing, flow and wetting, thermal (plasma arc

tests at NASA-JSC), structural performance, and other physical

properties to select one cure-in-place ablator material. The
five subtasks included:

I) Subtask I-I, definition of requirements and candidate
• ablators;

2) Subtask 1-2, evaluation of cure characteristics;

3) Subtask 1-3, evaluation of thermal performance;

4) Subtask 1-4, evaluation of structural performance;

5) Subtask 1-5, comparison of material properties and material
selection.

1.2 TASK 2, PACKAGING DEFINITION

We determined package requirements for the cure-in-place and

precured ablator TPS repair kits. The interfaces, including

crew operation, were then established so conceptual design could
be conducted for package containers and various elements. We

fabricated and delivered two applicator/mixer functional mock-
ups. The subtasks were:

I) Subtask 2-I, determination of packaging requirements;

2) Subtask 2-2, establishment of interfaces, including crew
operations;

3) Subtask 2-3, conceptual design of package container and
elements.

1.3 TASK 3, LARGE-AREA MATERIAL SELECTION

We defined the repair approach and requirements for the precured
ablators. Candidate ablators were then defined and evaluated to

select one precured ablator. The three subtasks included:

I) Subtask 3-I, definition of repair approach and requirements;r

2) Subtask 3-2, definition and evaluation of candidate precured
ablators;

3) Subtask 3-3, material selection.

,°
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1.4 TASK 4, END PRODUCTS

We defined the repair approach and requirements for the _recured
ablators. Cah_didate ablators were then defined and evaluated to

select one precured ablator. The two associated subtasks
included:

I) Subtask 4-1, final report;

: 2) Subtask 4-2, ablator matezial to be delivered.

The logic flow for the three major technical tasks is shown in
Figures I-3, I-4 and I-5.

The key program issues and our approach for snlving them are
presented in Table 1-1.

'_ Table I-I Program Issues and Approach

Issue OurApproach

I. CureCharacteristicsin I. Evaluationtestsin vacuum
Spaceenvironmentfor fora rangeoftemperatures.
Cure-in-Placeablator

2. PreliminaryDesigns
2. WorkablePreliminary - Considereddetailcrewoperations

DesignsforCure-in- - Usedstate-of-arttechnology
PlaceAblatorApplicator/ - Applicator/mixerenvelopemockups

Mixers for crewhandlingevaluation
3. ProgramRisk - Fabricationoffunctionalmockup

3. MinimizedProgramRisk
byconsideringtotalsystem
aspects.

- Requirements
- Materials
- Thermal

- StructuralStrength
- Design&Stress

Electrical
- CrewOperations& Safety

, - EaseofFabrication
,. QualityControl

v m
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2.0 REQUIREMENTS

The cure-in-place material must satisfy two functions: (i) it

must serve as an acceptable ablator for use in tile cavities,

and (2) it must also perform as an acceptable adhesive and gap

filler when used in conjunction with precured ablators for
large-area repair.

The requirements for selection of the cure-in-place ablator en-
compassed the following:

I) Use available "off-the-shelf" silicone-based material or

modification thereof;

2) Satisfy cure time (perform gel-cure inspection initially in

15-30 minutes, then extend I hour and complete cure in 18
hours);

3) Cure in a space environment with a temperature range of 40

to 125OF;

4) Must be compatible with and capable of wetting and curing
while in contact with RTV 560;

5) Have low thermal conductivity (thermal performance);

6) Have a minimum of 40 psi through-the-thickness strength and

bond strength (structural performance);

7) Must be compatible with cold-soaked conditions;

8) Have char retention during ablation;

9) Satisfy contamination effects for surface bonding;

, i0) Satisfy other physical properties such as shelf life, vis-

cosity, hardness, emissivity, etc.
0

The requirements for the precured ablator consisted of the

, fo]lowing:

. I) Use available "off-the-shelf" silicone-based material (no
development);

t

2) Must be compatible with cure-in-place ablator;

3) Have low thermal conductivity (thermal performance);

#

4) Provide a minimum of 40 psi through-the-thickness strength

(structural performance);i

5) Be compatible with cold-soaked conditions;

2-I
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6) Have char retention during ablation; :i

7) Have low density; t'i

8) Satisfy c_ntamination effects for surface bonding;

9) Satisfy other physical properties such as hardness, e_is-
sivity, etc.

The requirements for design of _he packaging container and ele-
ments encompassed the following:

1) Satisfy baseline TPS damage extent and location (establishes
volume);

2) Provide the number of package units to satisfy EVA
operations;

3) Have stowage area capability (orbiter, inflight tile repair
system (ITRS) and MMU packaging constraints);

4) Satisfy tether aspects; ,;

5) Allow EVA crewman handling; _/

6) Satisfy induced environment of orbiter and MMU;

7) Provide moldline plate (if required);

8) Provide thermal control during mixing (if required);

9) Satisfy material properties of viscosity, density and
mixing temperature;

I0) Provide a material storage life of six months.

i

2-2
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3.0 MATERIAL EVALUATIONS

The materials for the two ablators selected for us- in the TPS

flight repair kit are well characterized and have demonstrated a
reentry performance capability.

The precured ablator, SLA 561, was developed for the Viking pro-

ject and was thoroughly evaluated for service in that activity, i
The SLA 561 can totally satisfy the TPS flight repair require-

_ ments and was selected. The process used to prepare Viking ma- .'_
terial was altered to delete the requirement for reinforcement

and thermal sterilization of the constituents, thereby simplify-
_ ing fabrication of the precured material.

:' The cure-in-place ablator, MA 25S, is a mature formulation that

has been successfully used in prior applications. To provide

the ability to apply this ablator in space, "the established

formulation was modified. This modification (Type III) ha_ been
established and shown in this contract work to be completely
satisfactory for the intended application.

Martin Marietta has had a successful history of developing nuT,-

: erous thermal protection systems for various flight programs. /
Our candidate selection in this contract was based on this level

of background knowledge. Final selection was made as a resulc

Jf evaluation of property and performance data as well as our

knowledge of the anticipated behavior of the proposed system
modifications.

_" During previous flight system programs, Martin Marietta has de-

veloped several silicone ablators/insulators ranging in density

from 14 to 55 Ib/ft3. Typical examples of these materials are
ESA 3560, ESA 5500, MA 25S, SLA 220 and SLA 561. These ablators

have been qualified for use in the PRIME, X-15 PAET, Titan IIIC

peyload fairing, Viking, CF6 fan reverser, and Space Shuttle
external tank (ET) programs.

Repair materials that cure at room temperature without supple-

mental (vacuum bag) pressure have been developed for these
ablator syqtems. Three repair compositions (SLA 561 handpack,
JS 220, and MA 25S Type II), all flight-qualified and documented
by validated material specifications and processes, were se-
lected as cure-in-place candidates that could be modified for

the flight repair kit application.

Handpack SLA 561 is a closeout and repair material for SLA 561

used on the external tank. It has been qualified for use on ET

by wind tunnel tests in AEDC Hypersonic Tunnel C, by installa-
tion on Minitanks No. 9 and II and on a lO-foot diameter test

tank, and by evaluation in an Instrument Island simulation

test. Within paso months, plasma arc testing of handpack SLA

561 has been conducted at NASA-LRC. The gel time of the RTV 652

resin used in SLA 561 handpack is 7 to 12 minutes. The

45-minute working life is achieved by adding heptane, which re-
tards resin cure.

3-1
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JS 220 was developed as a repair material for the SLA 220

(RF-transparent) heat shield used on the radio altimeter of the

Viking Mars lander. JS 220 has also been supplied to Ball Bro-

thers Research Corporation (PO 31025) for use as a repair mater-

ial of the SLA 220 heat shield for a Minuteman flight test an-

tenna. The JS 220 working life of 2 hours is achieved by using

: a blend of RTV 652 (room temperature setting) and RTV 655 (ele-

vated temperature setting) silicone resins.

MA 25S Type II is a repair material for the HA 25S sprayable

silicone insulation system for the CF6 fan reverser. Its com-

position is identical to that of the HA 25S spray ablator after

solvent evaporation. HA 25S is also being used on ET in certain

shock interference heating regions. It has been qualified for

use on ET by wind tunnel tests. Similar to SLA 561 handpack,

the working life and viscosity of HA 25S Type II is controlled

by heptane addition.

3. l CURE-IN-PLACE ABLATORS

The evaluation of the cure-in-place ablator consisted of a

three-step process in which the environmental conditions associ-

ated with the ablator were altered as shown in Table 3.1-1. The

three conditions permitted preparation under (I) atmospheric

pressure in the temperature range of 40 to 125OF, (2) vacuum

in the temperature range of 40 to 125OF, and (3) in situ

vacuum at room temperature and at lO0oF.

2ab;c 3.i-i

Cm,e Ci,_raa_eri,_ia, s i'valwat"_on- _7_'ee Ste_,s.

I. At',_,_pherlcConditions(4U- 125°[)

a) Mixing(viscosl_,_ d) |B-hour Cure g) ShoreA Hardness
b) Compatlblll_ e) Density
c) GelTimes f) BondTension
Preparatlonof PlasmaArc Specimens

2. VacuumConditions(40- I?5"F)

a) MixingBasicMaterialsin Atmospher_
b) Deo_sResin/Fillersin Vacuum
c) MixingResin/FillerswithCatalystUsingVacuumMixer
d) %' Tins & ]B-hourCure(BellJars. SmallOven& Walk-In Refrigerator)
e) C_mpatlblll_ f) Density g) BondTension
n) ShoreA Hardness

J. In SituVacuumChamberConditions(Roomtemperature)

a) Mixingand Makingof All AspectsoftheMaterials
b) GelTimes c) 18-hourCure d) Compatibility
f) Densl_ g) BondTension h) ShoreA Hardness

The basic approach useo was to modify the candidate compositions

to remove the volatile heptane and reduce the percentage of fil-

lers for viscosity control.

Under the atmospheric conditions study, the first evaluation

consisted of determining gel time as a function of temperaLure

for the RTV 652/655 resin blend. As shown in Table 3.1-2, the

gel t_me was temperature-sensitive.

3-2
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Table 3.I-2

Cure C1_raateristics Evaluation - Atmospheric

Conditions - Step I

DeterminedGel Determined Evaluated.

Timest40- ]25"F) RTV652/655 l) PuttingPrimer
-:'_'W652/655ResinBlend _ ResinsNot _ MaterialsOver

Results: Co_._._petible RW560,Then -_
400F- 3 hr ]5 minutes withCurinq ApplyingAblator

?1SubstitutionofRT- 15minutes
RlV5]] Resin

]25"F- 2 minutes

I Selected
_='_tlon

__esln
- Compatiblewith Addition

RW56O ofRTV910
_- GoodBondTension -..liD. o-'Tluentand _ Conductedmaterial

Strencjth redudo-o_-'_ propertytestsand
- MinimizesCrew9perations _als preparedplasma

onOrbit toimprov_e arcspecimens

It was determined that the RTV 652/655 resin combination was not

compatible with curing on RTV 560. Two options were evaluated--

priming the RTV 560 prior to ablator ap, lication, and substitu-

tion with a compatible resin. Resin sub,=i'tution was selected

because it eliminated the necessity for an additional onorbit

operation (priming). The selected substitute, RTV 511, is com-

patible with RTV 560 and exhibits good bond tension strength.

RTV 910 was added to the RTV 511 resin as a diluent to improve

viscosity. The resulting materials are zdentified as the Type

III modifications; compositions are shown in Table 3.1-3.

Table 3. I-3

Definition of Modified Cure-in-Place Materials

Materials Resin Diluent Fillers
(RI"V511) (R?J-'_"_)_)

JS2?0TyPeIII 73.3 7.3 19,4
(I.0%catNyst)_ (EccospheresSI)

• _.25S TypeIII 73.3 7.3 19.4
(I.25%catalystP (EccospheresSi)

(SilicaFibers)
(Fe203)
(Cab-O-Sil)

_LA561TypeIII 76.3 7.6 16.I
(.8_ catalyst)' (Ecco';phere,;SI)

(Phenolk
Microl_lloons)

ICork)
(Carbonblack)
(SilicaFIl_rs) _

I_of resir_.

3-3
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The change of base resin resulted in a most interesting

phenomenon with respect to the effect of temperature on gel

r time. As shown in Table 3.1-4, gel time was essentially uniform
over the temperature range from 0 co 125OF.

TabLe 3.I-4

Ablator Gel Time Evaluation - Minutes and

Second_ - Step 1
A_ms_herlc Can@lions

Tem_r_u,i,
! Malerlal,

00F d0OF Room 1 'Z_"_Ti ' 6,.,
19,0,,t) 15'_" ! ,., ,,.:'

L ;W_ (21

I MA _ S,TyPeIII IS'41?' 14'50" ' 14'0"

I - tSLA 561Type Ill ! 16'(7' 15'6" M'15"
, I

_h
I, Mallrlalsml_ at room lemoer_re & lhe.'1puton sul)slr_e.

2. 0. ]25-1n. aluminum plate ,uDStrMa with M6Xl'ln. (Deplhl woodfral1_
I¢ov_re(Iwith mylart.

). Aluminum SubStriteltrame$ it lem_rature, Hewn alxYvefor ,2hours.

NOI_ (I) Materlal components, mlxlmJa_l_tlngad40°F On)_
f_) Malerlll comp0nents, mlxltxj and te,tl_ _ I_'01;_.1
OI Thermomeler In ma_erlal In, It,siN no IncrN_ In lemperature

As anticipated, reduction of the filler content resulted in an
increase in both density and hardness. As shown by Table 3,1-.5,
the bond tension strength, 100 psi, was significantly greater
than the 40-psi minimum requirements.

Table 3.i-5

Properties of Cure-in-Place Material Formulated

Under Atmospheric Conditions

ShoreA Bond

Den._ity. Hardness. Tension.
Formulation Ib/ft" % psi°

JS220,TypeIII 40.7 50 100

'/VIA25S,TypeIII 43.7 50 100

SLA561,TypeII I 42.5 50 100

rJS220 30.7 30 --

/V%A25S,TypeII 34.3 30 --

SLA561,Handpack 36.0 30 --

*18-hourcureat40"F;testedat4g'F;all specimensfailed
atben,lineofaluminumplu9to abtator.

The viscosity measurements were taken at room temperature for

the Type I11 materials as shown in Table 3.1-6._j

All candidates exhibited a viscosity significantly below the

baseline limit condition of 7600 poises, which is the viscosity

of RTV 577. Viscosity for HA 25S Type Ill mixed in vacuum and
exposed in situ for 72 hours (Step 3) was measured in air as a

function of temperature. The data showed that the vacuum proc-

; essing increased viscosity. However, the level at room tempera-
ture was below the RTV 577 baseline limit condition of 7600

poises. The data are shown in Table 3.1-7.
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Table 3.I-C

Viscosity ,.leas_rements-

Atmospheric Conditions

POISES

MA25STypeIII 3000

JS220TypeIII 2200- 2400

SLA561TypeIll 3400- 3800

RI_577 7_

h'tEASURE/VIENTAPPRQACI_j

I. Br_kfieldtestwithNo.7spindleat2rpr_

2. Roomtemperature, j

2able 3. i-7

Visco_ _'_L/,]eac:c:'_.*'I_;;:"-,"

MA 25S TypeIII-Mixed in

Vacuum and ExposedIn Situ
Vacuum Chamber for 72Hours

Temperature, Vlscosity,
_F Poises

40 8480

74 6080

125 4480

Plasma arc testing was performed at NASA-JSC on specimens of
each composition as discussed in Section 3.3. The results

showed that the Type III modifications all exhibited improved
performance over their respective baselines as evidenced by re-

duced char depth and weight loss. Although the SLA 561 demon-
strated slightly superior performance in terms of temperature

response, the difference is insignificant.

Large specimens of MA 25S (6x6x2 in.) were prepared and tested

" as discussed [n Section 3.3. Results confirmed the improved

char resistance and reduced weight previously demonstrated.

It was concluded at this point in the evaluation that all Type
Ill candidates were thermally satisfactory for the proposed

application Jnd that other factors should govern selection. In
fact the thermal performance well exceeded the requirements.

The RTV 51[ resin clearly demonstrated improved thermal perfor-

mance, as evidenced by less char, and minimized char layer swel-
ling. A decision was made to eliminate the JS 220 from further

evaluation at thLs point because it might demonstrate a lower

performance caused by a lesser ability to retain the char layer
because of the absence of silica fibers in the formulation.
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As the first step in the vacuum condition evaluation (step 2),
the gel time test was repeated using a bell jar, vacuum oven and
walk-in refrigerator. The data confirmed the previous finding V_
that the gel time is essentially independent of temperature as
shown in Table 3.I-8.

Table 3.1-8

Ablator Gel Time Evaluation - Minute8 and Seconds - Step 2

VacuumConditions(VacuumMixer, BellJar, VacuumOven& Walk-in-Refri9erator)

Temperature
Material 40OF Room 125°F

,, . ...J

MA755TypeIII 16'if' l.S'40" 15'30"
2.I'k Catalyst" tV

SLA561TypeIII 16'17' 15'40" 15'I(P
I.2'/.Catalyst_ R--

BasicApproach /_

I. Basicmaterialmixedatroomtemperaturein atmosphere. C

2. Basicmaterials(resinI fillers)degass_in vacuum. _-
3. ResinI fillers mixedwithcatalystin vacuummixer,putonsubstrate i_

andplacedin bell jars & smalloven.
4. O.]25-in. aluminumplatesubstratewith3x3xl-in. (depth)woodframe

(coveredwithmylar).
5. AluminumsubstrateI framesattemperaturesshownabovefor 2 hours.

"_of resin.

blixin 8 the cure-in-place ablator under vacuum conditions re-
sulted in properties similar to those obtained under atmospheric
conditions except for the reduction in bond tension due to some V"
voids. The data are su_arized in Tables 3.1-9 and 3.1-10.

In situ vacuum chamber processing (evaluation plan shown in

Table 3.1-11) conducted at room temperature and lO0oF con-
firmed the excellent performance of the MA 25S and SLA 561.

Although initial processing produced large voids, adequate de- ' ¢
gassing of the constituent materials minimized void formation to

essentially no voids. Density, hardness, and bond tension data

for materi., containing medium-sized voids (identified as series !
l) are summarized in Table 3.1-12.

I

s
The techniques for in situ vacuum chamber cure-in-place ablator C

Dprocessing are depic't'e_Tn Figure 3.1-1. View A shows one of
the two Hartin Marietta in situ vacuum chambers. Operation of
the remote manipulators z_'ss_ in View B. View C shows mixing

of a small batch of material using the manipulator to hold the

container. Pouring of the cure-in-place Naterial is shown in
View D.
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Table 3.1-9 Gure-in-Plaae Material Properties - Step 2

VacuumConditions(VacuumMixer, BellJar,vacuumoven,&walk-in-refrigerator)
Bond

Cure&Test Density, ShoreA Tension,
_ Materials Temperature Iblft3 Hardness psi

25STypeIII _40°F 41.8 40-45 58
Curedon R,T, ...42.2 40'45 42

RTV500/Aluminum J25°F 35,6 40-45 45

MA25S TypeIII
Curedon R.T. 39.8 40-45 42

RTV5601SIPIAluminum
i i i

MA25STypeIII
CuredBetween R,T, N/A 40-45 65
_TV5_/SlPIAluminum
andPrecured

SLA561
i.

ot

Table $.1-I0 Cure-in-Place Z4ataz_al Properties - Step 2

VacuumConditionVacuumMixer,BellJar,VacuumOven&Walk-in-Refrigerator)

Cure& Test Bond
Temperature, Densi_, ShoreA Tension,

Materials °F ib/ft3 Hardness psi
....... , i

SLA561TypeI II 40 36.0 45 - .50 41
Curedon5601SIPI R.T 34.0 45 -50 68
Aluminum 125 35.0 45 - 50 63

i i i • J i |l i i i

SLA561TypeIII
CuredBetween
RTV560/SIPI R.T. N/A 40 60
Aluminumand
PrecuredSLA561
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Table3.1-11 CureCharacteristicsEvaluation- Step3
p

InSituVacuumChamber-RoomTemperatureandIO0_F t

l. Establish%catalystrequiredfor 15-minute,45-nainute,and1-hourgel
- MA25STypeIII

SLA561TypeIII
r
|

2. Mixanddispensethetwomaterialsin vacuumtoprepare]P(3x3xl-in.)
ablatortestspecimens.
Testresults(density,bondtension,ShoreA hardness)usedwithother
datato selectonecure-in-placeablator.

3. Afterselectionofthecure-in-placeablator,9additional(3x3xl-in.)
specimenswerefabricatedforfinalmaterialfabrication.

Table3.I-I_
Propertiesof C,_re-in-PlaceI_aterialFormulated
UnderIn SituVacu,_Conditionsat 70eF(SeriesI)

Density, ShoreA BondTension,
Material Ib/ft3 Hardness psi

MA25SCuredonRTV5(_/Aluminum 39.8-43.7 40-45 70-118
l

(4].9avg) (10Iavg)

MA2PSCuredonRTV560/SIP=/Aluminum 37.9-42.2 40-45 84-88
(40.0avg) (86avg)

!

MA25SCuredBetweenRIV560/SIP*/ -- 45-50 82-99
AluminumandPrecuredSLA56] (9]avg)

SLAP6]CuredonRTV540/Aluminum 36.6 40-45 65-70
(67.5 av9)

, I[

SLA561CuredonRTV560/SIP*lAluminum 39.l 40-45 86

SLAP61CuredBetweenRTVPSI/SIP*/ .... 60-96
AluminumandSLA561PrecuredMaterial (77avg)

•SimulatedSIP:strengthgreatlyexceededthatofSIP usedfororbiterTPS.
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As a resutt of the three-step evsl++.',::_, we concluded that the
cure-in-place +btstors sstisfy sll pe+C++n_ince requi+ements and

,td be pcocessed under space vacua+ r.+ ,+itions. Although the
t.crformance chsr4cteriscics of HA 25_ ,_r_ $LA 5bl were similar,
"h_ lower viscosity of the former _'s... :mCicipsted better flow
ch_rscteri._cics for mixing and (is, ,':_ ::g became governing
_accors in selection of HA 25S Ty_ _t ss the proposed
c'zre-in-place _.,acerisl (spproved _: _,;_A-JS¢).

Alter _eccion of the _v_ 2_:_ :v_.: ;;_I material, a second _eries
of spec_men_ ws_ ce_ted. F_ _',:_ _fforts to reduce void content
by addicion_I _egas_ing sho_._4 :_ increase in density. The
increase is accribuCe_ co v_._id reduction. Data are su_rized

in Table 3.1-13. Figure 3.1-2 compares the HA 255 materlal proces-
seO by vacuum _Lxing and d_:_a_slng in the vacuum chamber for 72
hours or mote.

Tc_le _. I-I_

Propertie_ of Cure-in-P_aoe Material Formulated
Un_r In Si_u Condition_ (Serie_ 2)

Curve
_ndTest Bond
Teml_r_ure l_nsi_ ShoreA Tens_,

Mater,el °r iI_ft3 H_rdn_sspsi

MA2_$Cured 70 4_-_0.5 _ 1_'20"
onRSI lO0(Cure)
Residue/SI P 3_0(Test) 48-50 50 1_-20"

MA2_SCured I00 (Cure) 4&_-_G2 50-60 7&tO
on RlV _' _0 (Test) 1_. __)
Aluminum
'Failedin RSI.

t

(a) VM-2 SpecJJaent wlth (b) V_-3 Specimen with

Essentially No Voids Hany Voids

Figure _.1-2 Co,_ari_on of MA 2ZS Materials
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A final evaluation of the effect of temperature on gel time for
the HA 25S that bad been vacuum-mixed and degassed in the vacuum
chamber for 94 hours confirmed the insensitivity of gel time to
temperature. The data are shown in Table 3.1-14.

I'ab_e3.1-14

E_UeL of 2'emi,erature
on GeL Time

MA2_5Type111- Vacuum-Mixed
andDegassedIn SituVacuumChamber
f_r0,4Hours

:.mtmra{ure.GelTime,
'F Minutes

0 55

4O 58

70 68

125 65

3.2 PRECUREDABLATORS

The SLA 561 ablator successfully used on the Viking was the
baseline material candidate for the proposed application. Two

T alternatives, SLA 220 and ILSA 3560, were identified aa backup
materials. The properties of the three ablators are given in

"_ Table 3.2-1.

Tab'e d.:;-' Cand'r_z_e Pz_eured Abla_ore

Baseline
Material

Property SLA.561 SLA220 ESA-3560
Nikinq) (Viking)

IX-24C) (PRIME)

Density. Ib/ft3 14+I 14.5+ I 30+2

TensiN Strength. psi 60 85 120

Shore A Hardness 30 30 70-75

The SLA 561 used for Viking contained honeycomb _ore reinforce-
ment and the constituet,ts were heat-sterilized to eliminate Hars
contamination. To confirm that eliminaticn of the reiniorcement
and sterilization did not alter behavior, two separate billets

of precuted material were prepared, The properties, t_bulated
in Table 3.2-2, agreed with anticipated beha'_ior.

Plasma arc testing of one sample of Lhis material (as discussed
in Section 3.3) showed performance in agreement with prior work,
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1980005919-027



_w

Table 3.2-2

Recent Effort on Baseline Precured SLA 561

FabricatedOne PlasmaArcS_i men"

MaterialProperties". ""

Density. ' " Tension,psi Shm:eA

iblft3 Hardness
12.6 91 50-55

• Fillersnotheat-treatedas requiredduringViking
projectto eliminatecontaminationonMars.

• ' Twoseparatecuredbillets.

The SLA 561 was sel_cted as the material composition for the

precured ablator appli:ation.

3.3 ABLATOR PLASMA ARC TESTS

Twelve ablator specimens were exposed to plasma arc testing
during this effort. All tests were performed in either the JSC

5-megawatt facility or their 10-megawat_ channel facility. The
different tests are surmnarized in Table 3.3-1. The first nine

runs were screening tests made on stagnation models in the

5-megawatt plasma arc. Three tests were run on specimens
mounted in the wall of the 10-megawatt channel facility. Two of
these tests were made with 6x6x2-inch blocks of ablator and one

utilized a 3-inch diameter ablator specimen cured in a
6x6x2-inch HRSI tile. In each case, the 6x6-inch blocks were

surrounded by simulated HRSI blocks and tile gaps. The blocks

were aligned 450 with respect to the flow. A sketch of the
three different test specimen configurations is given in Figure

3.3-1. Pretest photographs of representative stagnation and

wedge models are given in Figures 3.3-2 and 3.3-3.

Table 3.3-I S_ of Plas_ Arc Teete Connoted

MixingandCure1
TypeofTestSpecimen TestCondition TestNo. AblatorMaterial Environment

StacjnationModel Ts°• 2600_F ! SLA._6!TypeIII Atmospheric
- 2-in.-Diameter 2 SLA56!Handpeck

3 JS220TypeII I
SpecimenCured 4 JS220in3.785.-in.HRSI
AnnularShroud :_ _ 25STypeIII

6 MA2,SSTypeII
2-in, Deep 7 MA25STypeI II

8 JS220TypeIII
9 PrecuredSLA561

Wedge/V_lel
- 6x6x2-in.Material cl• 36"* 10 MA25STypeIII Atmospheric
Specimen _1"20'* ]! /VpS,25STypeIII

WedgeNkxlel
- 3-in. Diametermen Cl"36"" ]2 /V_255TypeIII Vacuum
Specimenin6x6x2-in.
HRSITile

• SurfacetemperatureofApolloablator.

• ' Heatin9rateonspecimen,Bt,,,ft2-s.
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In all model configurations the ablator specimens were bonded to

a O.16-inch thick strain isolator pad that was bonded to an

O.060-inch aluminum backing plate. Thermocouples were installed
in all ablator specimens at nominal depths of i14, i/2 and 1

inch from the surface. The first eight screening specimens had
thermocouples inadvertantly installed as shown in Figure
3.3-4(a). This type of installation (hereinafter referred to as

type a) was judged to be subject to significant conduction
errors. Therefore JSC personnel modified the installation to

the type shown in Figure 3.3-4(b) for specimens used in tests I,

5 and 8. The latter type of installation (referred to as type
b) minimizes conduction losses by placing the thermocouple wire

along an isotherm in the material. Ablator samples for tests 9

through 12 were also instrumented as shown in Figure 3.3-4(b).

Since the material specimens for tests 2 through 4 and 6 and 7
had the type a thermocouple installation, the depth temperatures

from these tests were considered to have significant measurement
errors and were not used.

Thermxouple Thermxouple

_" JunotionJunction

\

(a) Original Installation (b) N_difiedInstallation

Figure 3.3-4 Ablator Yhermocoup_e Installation

All specimens were x-rayed to verify thermocouple depth. Th_

thermocouples in all the installations were at the desired i/4,
I/2 and 1-inch positions.

The screening tests (I through 9) of the candidate ablators were

made at a test condition that produced a 2600OF temperature on
the surface of the Apollo ablator. Wedge specimens i0 and 12

were exposed to a heating rate of 36 Btu/ft2-s and test ii was

run at a heating rate of 20 Btu/ft2-s. All test specimens

were exposed to the test environment for a period of I0 min-
utes. Additional plasma arc parameters for these tests are
tabulated.

Test Heating Ratej Stagnation Pitot Shear

B_u/ft2-s Enthalpy, Pressure, Stress,
Btu/ib psf psf

I through 9 44 6200 27 --
10 36 6800 42 1.79
II 20 4500 35 1.29

12 36 8800 70 2.13
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Results from the various plasma arc tests consisted of a compar-
ison of candidate ablator char characteristics and their indepth

thermocoupTe response. Figures 3.3-5 through 3.3-9 show char
photographs of most of the various test specimens. Figures

3.3-5 through 3.3-7 compare the char differences due to changing
from a 652 resin to a 511 resin. The 511 resin reduces the char

layer thickness and swelling for all the candidate ablators.
The char associated with the 511 ablators is relatively dense

and appears to possess good strength characteristics. Although
2 cracks were observed in the surface of the char, these were

thought to have occurred during the cooldown following test
exposure.

Tables 3.3-2 and 3.3-3 summarize the plasma arc results for the

stagnation and wedge specimens. Table 3.3-2 shows there is not
a significant difference in the aluminum temperature response

for any of the candidate ablators. Conversely, a comparison of
the cure environment effect on the wedge samples (Table 3.3-3)

shows a much higher aluminum temperature rise for the vacuum
cure, although the strain isolator (SIP) rise is not as great.
The fact that the aluminum rise is greater than the SIP rise in-

dicates the aluminum was responding to a heat path other than

through the ablator. This is also indicated by Figure 3.3-10,
which compares the transient temperature history of thermo-

couples located I inch from the surface of the two MA 25S speci-
mens. It can be seen that the vacuum cure temperature is lower

at the 1-inch plane, which also suggests that differences in SIP

temperatures may have been caused by the aluminum plate.

Table 3.3-2

Plasma Arc Test Results - MA 25S Stagnation Models

MaxSIP MaxAluminum
CharDepth.!WeightLoss. aTemperature.,,Temperature

Material Re_in in. l_ °F °F

SLA561Precured 655 l.O0 21.6 17 13

SLA56]TypeIII 51] 0.42 8.5 4 8.6

SLA56]Handpack 652 O.57 ]] 7.5 8.8

JS 220TypeIII 5]1 0.50 8.4 ]].3 9.0

JS 220 652 1.02 13.2 9.6 7.]

MA25STypeIII, No, l 511 0.48 7.4 ]5.7 ]].6

MA25STypeII I, No.2 51] 0.50 7.2 12.3 8.7

MA255TypeII 652 0.94 8.2 ]].4 ]1.6

Table 3.3-3
Plasma Arc Test Results (Atmospheric-Prepared

Material) - MA 25S Wedge Models

Test Cure AverageChar Weight MaxSIP MaxAluminum
No. Environment Depth,in. Loss,% _ I",°F '_T,°F

IO Atmospheric 0.53 9.9 8 4

lI Atmospheric 0.45 8.4 3 -+

L2 Vacuum O.50 8.] 14 38
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SLA 561 Type III (RTV 511 Resin)

Front View Cross Section

SLA 561 Handpack (RTV 652 Resin)

_ -, , b

_. ',-_

x¢_ ' " 2" _ ""

% #'" , ....... .---.

Front View Cross Section

Figure 3.3-5 P_asma Arc Spe_tmens After Test
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MA 25S Type III

- 4% _

Front View Cross Section

Fron_ Slew Cross Section

Fijure 3.3-6 Plasma Arc Specimens After Test
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Front View Cross Section

* Results affected by mul_iple arc shutdowns and restarts.

Figure $.3-7 Plasma Arc Specimens After Test
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p

Top View

Cross Section

Figure 3.3-8 Precz_dd Abtator (_;LA 561) After Test
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Test Fiohty lO-megiwitt Ct_innel Conflgurihon

Thermocouple Depth. I inch from Huted SurfKe

Hell Flux: 36 atulft 2 S

1 Atmosphere _ n.

]0C _ _Vacuum
Cure

I L I ,t I !
0 100 200 300 400 500 600

Time from Starl of Test. seconds

Fi,gz_e 3.3-10
Effect of Cure Environment on I_ 25S

Therma I Performance

3.4 ABLATOR THERMALPERFORMANCEPREDICTIONS

A thermal model was developed to predict the thermal performance
of the candidate ablator materials during reentry. The princi-
pal output of interest from the model was the maximum tempera-

ture of tilealuminum structure protected by the ablator. For
purposes of comparison, a thermal model was also developed for
HRSI. Figure 3.4-I describes both models.

HRSIThermalModel / /

- UsedtoProvideFlightBaseline / (
Temperatures HRSI
HRSI ThermalConductivityat or | 8Nodes "_

65psfUsed Ablator _
O.16-in.Nomex_'///_.//_.I _I.o_Je////_J

AblatorThermalModels Aluminum { l Node I

NoRecessionConsidered
ExistingVirginMaterialThermalConductivityandSpecificHeatDataUsedforAll
Materials
CharThermalConouctivityAdjustedtoMatchPlasmaArcTestData
- IndepthThermxoupleTemperatureProfilesMatched
CharDensityDeducedfromPlasmaArcTestResults

Figure 3.4-I Ablator and HRSI Thermal Mode_s

As noted in the figure, these models were relatively simple.
The ablatur model did not consider surface recession and it

treated the material essentially as an insulator with a unique
set of thermal properties for both the virgin material and the
char layer. The virgin materlal thermal properties were taken
from previously established data. Thermal propertzes of the
char layer were deduced from the plasma arc test results. Char
layer density was calculated from char depth measurements and
pretest and posttest ablator weights. Thermal conductivity was
inferred from the indepth thermocouple measurements of the stag-
nation test specimens. Figure 3.4-2 shows the resulting corre-
lation between the temperature profiles predicted by the
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analytical model and the indepth thermocouple data. Calcula-
tions were not made for SLA 220 since it had already been eliwai-
nated as a candidate material. The precured correlation is
shown at 400 seconds rather than 600 seconds (end of test)
because the I/2-inch thermocouple data were lost after this time.

o ThermocoupleData St_Kjnati0nTestSpecimensAnalyticalModel
2500

i MA25S SLA561 _ SLA561

at600s

E 1500

1

I
0 - L i , 7 • I •
o 1 2 0 1 2 1 2

OistancefromHutedSurface. in.

P-_gume3.4-_
Comparison of Measured and Predioted Ablator
Te_3era_ure Profiles

Figure 3.4-3 compares the transient temperature response of
HRSI-protected aluminum structlre with RI model predictions.
The a.alysis was made for body point 1030. The location is il-
lustrated in Figure 3.4-4. The asreement is considered good in
view of the fact that our model used the simplifying assumption
that an average reentry pressure of 65 psf can be used to deter-
mine the HRSI thermal conductivity. The 15OF difference shown
is attributed to our use of a constant-pressure thermal conduc-
tivity, whereas the RI model considers a variable-pressure ef-
fect on thermal conductivity.

- AluminumTemperatureHistoryDuringReentry

IV,lrtin J_Mri_ Pr_llc_on

-Ilody Point1030 I > _C
HRSIThickness- 3.26in.| -_- /

.. OtsignTrajectoryIMI4. CI /Z

j_" ISO //__ II Predlctlon

I
l

0
Tim fromEntry. s

Figure 3.4-3
Comparison of HRSI ThermaZ Model Predictions
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-inihilTemperiture_]_°F
- SIPThickness.0.16in.
- DesignT_j_ ]M14,IC

_ximumStructuredTempe_tureki_.
BodyTh,ckness5_5o1 _ 255 5_1
Pointin. TyNIII TyNIII PrKur_ HRSI
1030 3.26 17.4 9.3 _ 114
17_ 0.81 241 245 12_ 2_
18_ 10 1)_ 1}9 _7 210

213 3._ 0.1 0.4 6 D

10_0 / .__ r • 21)

Fi2ure 3.4-4
Ablat_r _hermal Perfo_noe Predictions

Flight predictions were m_de for ablator-protected and HRSI-pro-
tected structure at the four locations sho_ in Figure 3.4-4.

This figure also defines the HRSI and effective aluminum thick-
nesses at these locations, as veil as the corresponding entry
heating levels. Results of the flight analysis are given in
Figure 3.4-4. The temperatures shown represent the temperature
rise above the initial entzy temperature used for the analysis,
which was lO0oF. In these terms, the allowable temperature
rise of the structure is 250OF. As noted in the figure, all
calculations assumed a SIP thickness of 0.16 inch.

Figure 3.4-4 shows that the temperature rise for both of the
cure-in-place ablator candidates is less than for HRSI at all
body points and is also less than the allowable temperature rise
of 250OF. The temperature, however, approaches the 2500
limit at body point 1703. The precured ablator exceeds this
limit slightly--by 32OF at body point 1703. It can be kept
below the limlt if the initial entry temperature is reduced as

showu in Figure 3.4-5. This figure shows actual temperatures
rather than temperatu,: rise and that a 50OF initial tempera-
ture produces the desired 350OF ,_,ximum structural tempera-
Cure. The 50oF initial temperature could be achieved by
proper orbiter attitude control prior to reentry. An acceptable
temperature can also be reached by utilizing the allowable _old-
line tolerance. For example, increasing the O.81-1nch precured
ablator thickness by 0.25 inch gives a maximum structural temp-
erature of 332OF at body point 170_.

Another study examined the sensitivity of the ablator thermal
perfor_nce to entry mission. The results, given in Table
3.4-I, confirm the trends noted in previous ablator studies,
i.e., backface temperature is _elatlvely insensitive to total
heat load.
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SLA_I
Pm:ur_ _ _

_ ___" _ -31111

_. _ _'_ MA-25S

_ _,- _" TypeIII
Maximum
Structural 200,¢ _'_*
TPmperature, AblatorThickness:0.81in.
oF SIPThickness:O.16in.

AluminumSmearThickness:0.2/4 in.

100- DesignTrajectory14414.lC

O I I i __.J
-I00 -50 0 +50 +lO0

InltialReentryTemperatur:,"F

_igu_e 3.4-_
Effeat of Inici_ Temperature on Ablator Entry
The_l Perfor_nQe at Body Point 1705

Table 3.4-I

Effect of Misaion on Maximum E_ry Temperature

InitialTemperature• 100oF
SLA561PrecuredAblator

- AblatorThickness• O.81in.
- BodyPoint1103

Mission TemperatureChange._r-

14414.C Design 0

STS-INominil -ll

STS-ILoadDisperse +lO

STS-]RiteDisperse -3

From14414.C DesignMission
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4.0 OPERATIONAL USE DEFINITION

Definition of the crew operations interfaces was initiated with

the review of applicable requirements documentation. The TPS

Repair Kit Requirements document, J5C16209 and P_eliminary--
FOD-TPS Repair Kit Operational ReQuirements document were speci-
fically reviewed.

Repair kit timeline constraints were compiled and sequenced to

provide a clear understanding of time-oriented requirements and
their effect on the overall mission timeline and repair kit de-

sign. Repair kit timeline constraints, given in Table 4-I, are
summarized as follows:

;. I) Crew will not be available for repair kit activiti_ urtil
launch + 5 hours;

2) Crew cabin monitoring will be limited to two to three switch
activitstions or meter readings not to exceed 10 minutes per
crew day;

3) IVA repair kit actions that potentially will enhance or
shorten the EVA will be performed within 45 minutes during

the first half of the 3-hour EVA preparation time;

4) Time requirements were not specified for payload bay activi-
ties;

5) Five areas, with a maximum size of 18x36 inches, can be re-

paired during a 6-hour EVA;

6) Each repair, from start until assessment completion, will be
performed within 45 minutes maximum_

7) Cure-in-place ablator material will re_ch a gel ra_e within

15 to 30 minutes after application;

8J Assessment of the repair will not require more than lO minu-
tes;

9) Cure-in°pla,:e ablator material will cure in a minimum of 18

hour, -recedit_gstart of reentry;

I0) Repair kit material wi!l be sufficient to support three
6-hour EVAs.

Analysis of the timeli_e constraints during the study revealed a
minimal number of impacts, as identified in Table 4-2. Solu-
tions indicate the impacts will _emain within the overall mrs' -
sion timeline constraints and requtrements intent. Enabling o_
payload bay (PLB) power to support thermal conditioning of the

_"l
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Table 4-I Repair Kit Timeline Constraints

LAUNCH FZg-_
CREWCABIN(FLIGHTDECK)ACTIVITIESSTART
2to3SWITCHACTIVATIONSORMETERREADINGS I0 MIN/DAY

EVAPREPAR_fA-_"_'-"'-""-"_ _

REPAIRKITPREPARAT,ONSSTART ,4_.N _.5_RCOMPLETE}IF REQUIREDREPAIRKITPREPARATIONS 3 HR
EMUPREPARAT_
_A PREPARATI_NS_;OMPLETE
DEPRESSTHEAIRLOC_.. _ ["--

R[PAJRKITACTLYI_TIESINPAY[OA_DBAY /
STARTe_eAmACnVm' _ /
_E_R_R_AC_xmG r-7 I I |
REPAIRAREAOf 18x36-in.MAXIMUM 30MIN ._..... ' |
REPAIRMATERIALREACHESGELSTATE I I ? rain |
A-SSESSMENT_EPAi RSTART----" _ _ I |
ASSESSMENTOFREPAIR_ ___0MIN I I 16HR

_MIN |1
4THREPAIR_ _1 I
5THREPAIRSITE 45MIN I I

REPAiRKilACTI_ilTIES--iNP-__ L=,.J- [--']REPRESSTHEAIRL_K -- _ _ 18HR
REPAIRMATERIALCURED .' I

STARTREENTRYACTIVITY

repair kit stowage container and contents will be required prior

to launch + 5 hours. Completion of this function appears possi-

ble by the right-seated crewman enabling the necessary
switch(es) on orbiter panel RI.

Table 4-2 P,epair Kit Timeline Impaote

NOCREWhlAINTENANCEI hIONITORINGUNTILL +5HOUR_i
- EnablePLB PowerforThermalControlviaCabinPanelRI

CAPABILI TYOFFI VElgx_S-_n.REPAIRSDURING6-HREVA
- ReposltioningrecluiredtosupportEMUworkenvelope
- 2to3 LargeRepalrAreasduring6-hr EVA
- FlyepossibleduringtheThree6-hr EVAs

15to30MINUTESTOREACHGELSTATE& ]O-MINUTEASSESS/VENTOVERLAP
- SignificantassessmentisOMLcomparisonwithsurroundingarea
- GelstateincreasesthedJfficulbjtoperformfurthercorrectiveaction

Performing five repairs with a maximum size of 18x36 inches dur-

ing a single 6-hour EVA does not appear feasible. One of two
factors, or both, will necessitate division of the repair site

into workable task areas. Variations in the cavity depth could

range form 1.01 to 3.66 inches, necessitating task buildup for
the ]argest depression or large-volume cure-in-place/exact

thickness precured materials to support all possibilities. An
EMU work envelope guideline of 12x24 inches will require reposi-

tioning to workable task areas or large-volume cure-in-

place/rapid application if the envelope is expanded. However,

performing two to three large repair areas appears more realis-

tic during a single 6-hour EVA and all five will certainly be

possible during three 6-hour EVAs.

4-2
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Reaching the gel state for cure-in-place material in 15 to 30

minutes and assessment of the repair within 10 minutes are con-

sidered overlapping functions and viewed as a single time re-

quirement. The two significant assessment features are compari-
sons of the gel state and outer moldline (OML) with the sur-

rounding area. The most significant assessment feature is com-

parison of the OML with the surrounding area and any subsequent
corrective actions. Assessment and corrective activities were

therefore considered to be a part of the time prior to reaching
the gel state (workability). Shorter times to reach the gel

state for cure-in-place materials increases the difficulty to
perform further corrections of the OML, if required, while

longer times require inactive support of small repair areas or

sampling techniques to ensure that the gel state has occurred.

Preliminary event timelines for the two concepts used in re-

pairing the large work area indicated a gel time of 1 hour to be

more desirable. Further definition of task work areas,
unit/volume selection and timelines will allow selection of a

single gel time that can support both large and small repair

areas. After an understanding of the time-oriented requirements

was gained, the crew activities were indentified for the crew

cabin, middeck, payload bay and repair site. Crew activities
for each of these crew stations are summarized in Table 4-3. No

repair kit activities that could enhance or contribute to a

shorter duration EVA by performing middeck preparations were
identified. The middeck crew station was therefore eliminated

from further analysis.

Table 4-3 Repair Kit Timeline Aativitie8

CREWCABIN
] to2 SWITCHACTUATIONSONORBITERPANELRI TOENABLEPLBPOWER
TOREPAIRKITTHERNLALSYSI-t.Nt

- TBDh'ETERREADINGSAT !NTERVALSDURINGEACHCREWDAY(<]0 MINI
IVIIDDECK
- NOREPAIRKITACTIVITIESIDENTIFIEDTHATWILLENHANCEOR CONTRIBUTE
TOA SHORTERDURATIONEVA

PAYLOADBAY
- AAINIMALEVATIMELINEACTIVITY

- UNSTOW,PREPARE& REENTRYSTOWAGE
REPAIRSIE
- 45MINUESIREPAIRSITEALLOCATEDTOEVATIMELINE
- INSPECTIONOfREPAIRSIE
- AREAPREPARATION/DEBRISREMOVAL.°IFREQUIRED°USINGMAXIMUM OF2 TOOLS
- UNSTOWREPAIRKITIEAn(S)NEEDED
- CURE-IN-PLACEADHESIVEMIXING
- APPLICATIONOfADHESIVETO:(a)FILLVOID

(b)BONU PRECUREDBLOCK(S)&FILLVOIDS
- O#,LASSESSMENTUSINGREQUIREDTOOL
- SUPPORTREPAIREDAREAFORSUFFICIENTTIMETOASSESSGELSTATE
- ASSESSMENTOfREPAIR

L " STOW ITEM(S)AS NECESSARYFORTRANSLATION

The timeli_le constraints and projected crew activities provided

the basis for development of an EVA concept, repair approach and

preliminary event timeline. Throughout the study these were

interactive with repair kit concepts development and tradeoff

evaluations in refining the crew/operations interface.

:L
f
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The complete repair EVA concept is summarized in Table 4-4 to
provide a basis for the baseline operational use description.

The activities shown in bold print represent activities in the

EVA where the repair kit design directly affects the tasks and

time required of the EVA crewman. The 6-hour EVA begins with

the EVA crewman depressing and egressing the airlock. Transla-
tion will be made within the payload bay to the TPS repair kit

stowage area.

Table 4-4 EVA Concept for t_4U

Depress&EgresstheAirlock
Translateto PayloadBayStowageArea
UNSTOW& PREPAREREPAIRKIT
Don&CheckOuttheM/VILI
SecureRepairKit/WorkStationtoMMU

_ F,9.LessthLpaLIoad.._BBay_

i FlytoRepairSite
AttachtotheOrbiter
PERFORMREPAIRKITPREPARATIONS

I PERFORMREPAIR
I PERFOR/_REPAIRASSESS/VENTPERFORMREFAIRKITSTOWAGE
I. R__uurn..[JFIIqhtto.Payl__oad_.

RepeattheAboveBlock4Times
RemoveRepairKit/WorkStationfrom/Vg_U
Secure/V_IU
STOWREPAIRKIT
hNjress& RepresstheAirlock
TerminatetheEVA

TPS repair kit activities commence at this point in the EVA.

The TPS repair kit stowage container will be opened, launch re-
straints removed and repair kit items to support the first plan-

ned repair site removed. The doors will then be closed to main-

tain the thermal environment. Having unstowed and prepared the

repair site items onto the work restraint (Wit),the EVA crewman

will don and check out the manned maneuvering unit (MMU), deploy

the Witonto the MMU, egress the PLB, fly to the repair site and
attach the MMU/WR to the orbiter.

Repair area preparations will include an inspection of the re-

pair site and preparing the area. Two tools will be provided
for this task. Irregular portions of tiles that appear struc-

turally sound will not receive any preparations because our

cure-in-place ablator does not need smooth surfaces to adhere.

The site will be repaired using one of three repair tech-

niques--coating repair, cure-in-place ablator application or
precured application. Assessment of the repair will consist of

determining that the repair is within +0.25 inch of the outer
moldline using the OML assessment tool-and observing that the

gel state has occurred. Used repair kit items will be placed in
the WR transport container for return flight to the PLB or

another repair site.

4-4
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As additional repair items are required for other repair sites_

return flights will be made to the PLB to return used items and

obtain the necessary materials to support the next repair site.

This repetitive sequence will be performed as many times as the

EVA plan specifies. On the last return flight, _he WR will be

stowed and removed from the MMU and the MMU will be secured and
doffed.

The EVA crewman will return to the TPS repair kit stowage con-

tainer and remove any used items from the WR transport contain-

er. The TFS repair kit stowage container will be closed and the

launch/reentry EVA latch reengaged. If additional EVAs are

planned, the thermal protective edge cover will be pressed back

in place.

Translation will be made within the PLB to the airlock. The EVA

crewman will ingress and repress the airlock and subsequently
terminate the EVA.

Figures 4-1, 4-2, 4-3 and 4-4 and Tabl_s 4-5 and 4-6 provide and

overview of our repair approach, stowage container, self-con-

ta_ued unit and three-part unit concepts. Data and significant

features for each design concept that support the operational

use definitions and the results of our design definition are

identified. The results of integrating requirements with design

alternatives that offer operational suitability for the re_air

mission are reflected. Figure 4-5 depicts the four tool con-

cepts defined to support the repair task.

EquivalenttoThree Equivalentto
6x6-in.Tiles 18x36in.

Requirement- 1080in.3 Cure-in-Place Requirement- 6480in.3 Precurecl

Cure-in-Place Precu,o.d
Primary Blocks

Primary
2in.

__ PrecuredBlocklsl Singleor
&Cure-in-Place Multiple

j__Fill Precured

.. Blocks&
Cure-in-

_- /. PlaceFill
/

/t

£ijux,c 4-1 i_l,_Z_._A2,eas

.. 4-5
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Co_mgRepairContainers
• .d-gRestracnt

._ [ Strap,Typ,

g fJ.L.,l _ .......... Appl_.aror_,ltxerL,.ch -- --A

T_Is"- i//_ Cranks .....C,earmo_or/BIIteryAssembhesQ)

Fig_e 4-2 S_ge Cont_i_r

.t,,res 3 1
RaredNozzreSpreader _ 1- Usa01eVolume• ]62.5m. /

\ --, f-_. I" EsttmtedWeght(Loadedl• ].3IbI

- CatalystDispenser, _,_.3_ P_I_

L '_l_'t'_'-" _ Seetl_roughure EVA_xmgtor' Pressure_ .

Chaml_r _.

_L - TwoMixingCapabilities I

Fig_e 4-3 Self-Confined Unit

,I

D'spenserIt_HL'_ -EVAHandle
Catalyst 'FlowControl

_m _Utures: 3 1

Pressure}! i_t_ I" Usablev°lume" )gOin" I
' [- E)timatedWeight(loaded)- 4t. 6 Ib

' l" Size- 7 3/8in, OOx lgin _ongJ
otor _ EVAMixing

t Two_xin 9 Capal)dities J

Fi_._e 4-4 _ee-P_t Unit

4-6
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Table 4-5

Repair Capabilities - Self-Contained Unit

Self-ConG11nedUnit

Equivalentto Three6x6xZ-in. Tiles Equivalentto IBm6 in.

Cure-m-Place Cure-in-Place Cure-in-Place and

Only and Frecured Precureo

J Repa,rSites perUntt 0 75 ] 0.._

Repair Sdes _, Kd 6 8 4
EVATimehneper Repa,rSite 28 minutes 60 minutes"

StowageQuantities- BUnits

UsableVolumeCure-m-Place

- 162..=,sn.t per Und
3

- ]30O,n per Kit

VolumePrecuredBlocks
3

- 6534in
- 162Blocks(84of I 112,48 of 1, 50of 314)

FlowRite 21m. 3 at30 ps,
"Worstcase, noMMU/WRreposition.

Table 4-6

Repair Capabilities - T_ree_Part Unit

Three-Patl Untt

Equtv----alentto T_-hree6x6xZ-in. Tiles Equivalentto )Bx_ in
Cure-lnPlace Cure-m-Place t C,'re-m-Placeand

JOnly i and Precured I PrecunKI

I Re.,rs,te.peroo,,t. j;" --
RepairSalesper Ktte

EVATimelineper RepairStte 28minutes (]stt 50 r_inues'

22 m,nutes(2nd) i (

I StowageQuanttt,c_- 4 ,Jr,,isand4 HOSeswith Nozzles

UsableVolumeCuro-_'_-Plzce

- 390in j oerUnd

- 1560in _'per Kit

VolumePrecuredBlocks
- 6=,34m ]

- 16ZBlocks(04 o! ] );Z 4gof I. _0of 314)
f_ Rate- 2t in3 at 100psi

['Worst case. noMMUtWRreposition.

HandCrank BackupMix Mode ExtenslbleMoldin9Cage

Hand__nKn®.-.'_ O_n._,_,._tIPap-On

"F_y F,tt;ng O_m /'_'
TetherRing Tether i -" / 7 to37-in

R,_g_L_ Ca_,ty
CavityPreparatlon_'Trowel ¢_.I

/

J r CavdyPreparationTool

_ L / "

Tether / "_

Tether ../" \/Ring RIr_..."/_

Figz_re 4-5 Tools
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4.1 STOWAGECONTAINER

The basis for the stowage container design is summarized in
Table 4-7. An overview of the stowage container and its signi-

ficant operational use features is depicted in Figure 4-2. The

EVA cre,_nan will lift the thermal protective edge cover by pul-
ling a series of tabs to release the Velcro. An EVA latch will

be released and each door will be positioned open (detent design

holds door in place). A minimal number of launch restraints

will be unlatched (EVA latch), pulled to release and stowed in

voids within the applicator/mixer stowage volume. Three thick-
nesses of precured blocks, soft-packaged to support typical re-

pair sites, and emmittance repair agent spray cans are available

in a pantry concept on the right half of the stowage container.

Mixer/appllcator units are available in a similiar pantry on the
left half of the stowage container. Gearmotor/battery assem-

blies, mixing hand crank and EVA tools to support repairs are
mounted (EVA removable) on the left-hand door. EVA soft re-

straints will maintain the organizationwithin the stowage con-
tainer and assist in placing used units back into the stowage
container. Repair site scenerios developed before flight and

refined during and after the inspection EVA will enable the EVA

crewman to remove the repair kit items necessary to support

targe single or multiple small repair sites and place them in
the work restraint transport container. The doors will then be

closed between uses for thermal protection and maintained closed
in orbit by magnetic latches.

Table 4-7 Basis for Stowage Container Design

EVAFootRestraints Locatedfor Visual and Manipulative Tasks

EVA RemovableFront Cover

- EVA latching mechanisms
- Openfront cover restrained to container
- Magnetic latches for onorbit use

EVA RemovableInterior Launch Restraints

- Front plane access
- Minimal loosehardware

RepairSite Items Compartmentalizedin StowageContainer
- Applicator/mixer units
- Precured blocks(packedto supporttypical site)
- Toolcaddystowagesimilar to Shuttle contingencytools
- Spraycans

EVATransfer Bags
- Holdrepair site items
- Noonorbit packingrequired
- Front plane accessto removefrom stowagecontainer
- Soft restraint of contents

4-8
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4.2 PREC[TRErBLOCK QUANTITY RATIONALE

Our low-density precured ablator material, SLA 561, offers the
capability to support a significant total repair area. We have
carried our analysis beyond the standard block, 2 inches thick,
because the orbiter tile thickness ranges from 1.01 to 3.66
inches (Fig. 4-6). We chose the 18x36-inch (3x6 tiles) as the
probable maximum repair site size and assumed that any bonding
layers of cure-in-placeablator would require approximately 0.2
inch of thickness for each lay@r of precured blocks. The result
of our analysis revealed a combination of three thicknesses
(0.75, 1.0, 1.5 in.) provides the capability to support repair

areas in the entire range of thicknesses with minimum layer

building required. This analysis is summarized in Table 4-8

and contains recommended proportional quantities for the three

thicknesses necessary to meet the 6480 in.3 requirement. The

usable volume of cure-in-place ablator we have provided supports

this recommendation. Partial/irregalar tile repair will be pro-

vided foz by either prescoring several of the blocks or precut-

ring several blocks into random sizes (e.g. 4x2, 3x3, 2x2, etc).

[_flH_S'Th,ckn,_S.,,.. _'_\

t

O_lterTileThicknessRan_, in.
I. Ol
1.12
I.28
I. 55
1.70
I._
2.01

2,41
2.63
3._

Figure 4-6 External InsulationThiokne88

Table 4-8

Precured Quantity Analysis Summary

SpecificationArea, [--"
1_x36in, |

_. IOx6TileArray) !
urotter ....... l meco menOedPrecuredBlocksTile _PrecuredBlocks.,n.,-_ ...........
Thickness,Iwith 300in3, i Ouantdy.No./ Volume. Weight
m [ Cure-m-Place _Thlckness ,n.-' I It)'

.................
I'12 i 18of3/4
1.28 18_I |

l

t.55 18ofI 50o_314
l 70 18_ II/2 48_ I 6))4 49.2
l 88 18of1 112 64of1l/2
!20l 18ofl I/2
1204 18ofII/2
?.41 36 olI
2.63 36ofI
) 66 __ )6_illI/2 .......

['Assu_s13Ib/ftj forprecuredblocks
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4.3 APPLICATOR/MIXER UNIT

An overview of these units end their respective operational use

features is depicted in Figures 4-3 and 4-4. The self-contained
unit and three-part unit are each operationally suitable for an
EVA crewman to perform two primary functions: (1)mixing of _he

cure-in-place ablator material, and (2)application of the
cure-in-place ablator to fill a void or form a bonding

layer(s)-. The numerous tradeoffs for crew use optimization

evaluated in arriving at the reco_aended design are summarized
in Table 4-9.

Table 4-9

Applicator Unit Tradeoffs for Crew

Use Optimization

EliminateManualActionforExpulsion
- Continuouspressuretoaftordiaphragm

ProvideFlowRateControlforExpulsion
- Real-timeopanJflowcontrol/closecapability

IncreaseConfidenceofEVACure-in-PlaceMixing
- _ispensecatalystovercartridgelength
- Eliminatepressurizationsystemforcatalystexpulsion
- Primaryantibackupmixingcapability
- Catalystdyevisualcue
- Wiperstoeliminatecapi.aryattraction

MinimizeApphcator/MixerUnitSizeforApplicationTask
- Primaryandbackupmixinghardwareremovable
- Usablevolumevsworkablevolumevsstowagevolume
- UnitorientationrelatwetoEVAcrewmanandrepairsite

IntegrateAidsintoConcept
- Spreadingcapabilitywithflared-endnozzle
- One-handoperationalusecapability
- Second-tlandguideassisthandle
- E_tensionlorincreasedvisibilityandcavitydepthaccess

The orbit mixing function of the cure-in-place ablator must
occur if repair activities are to be successful. Therefore we

have provided a redundsnt means to complete the mixing function
and a visual indication for the EVA crewman.

It is extremely important that the EVA crewman be provided a
visual cue that m_xing has been accomplished rather than finding
that gel has not occurred after completing the repair. The blA
25S cure-in-place ablator offers the capability to produce this
visual cue because the mixed material contains ferric oxide,
which is _een as a reddish hue. Ferric oxide mixed in a normal-

ly white resin produces the reddish hue. Housing the ferric
oxide with the catalyst provides a positive indication of cata-
lyst dispersion and material mixing. The catalyst further has
the property of migration beyond that of the ferr;c oxide even
in a vacuum.

4-I0
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Nominal mixing will be performed immediately following repair

site preparations to maximize the time available to use the pre-
determined work life of the cure-in-place ablator. The EVA
crewman will remove either unit from the work restraint trans-

port container, attach a tether ro the thether ring and place it

I nozzle end down in a mixing holder. Nominal mixing will be ac-

complished using a gearmotor/battery assembly and a manual mix-

ing capability is provided as a backup. A spare gearmotor/bat-
tery assembly is also available in the TPS repair kit stowage
container as well as the backup manual hand crank. A
swing-in-place mixing holder device mounted on the WR will elim-
inate the need for the EVa crewman to hold the unit and overcome
rotational movement. The EVA crewman will then attach (EVA

snap-on/off) the flexible drive shaft from the gearmotor/battery
assembly, also mounted on the holder, to the aft end of either
unit. The gearmotor/battery assembly will be engaged (EVA
on/off switch) for a period of 3 minutes to achieve mixing. The
initial rotary motion of the mixing paddles fractures the cata-
lyst bolder, dispersing the catalyst over the entire cartridge
length.

Our current mockup has a seethrough cartridge for the mixing
visual cue. However, as mixing confidence is demonstrated, a
simple visual obeservation of the ab]ator material as it is dis-

pensed may prove sufficient.

The mockup was used to demonstrate mixing numerous times and one
time with actual catalyst. The results of the cured material
are shown in Table 4-10.

Tc_le 4-10

Fun_tional Mock_ Oe._stra_ion of MA 25S

MixedandApphedMA25Swdh FunchonalM_kup

Pour_ Four lx3x3-mch Bilks

GelTimeA_r_imate!y _ mlnules

Te_tData:

r Shore AHardness BondTension, _i ]

Ist Bl_k i 35-_ 51
4th Bl_k _5-_ 65

4.3.1 Sel f-Contained Unit

The EVA crewman will remove the self-contained unit and swing
the mixing holder device out of the way. One turn of the pres-

surization cartridge puncture_ it and applies pressure to the
piston. The cure-in-place ablator to fill a void or form a
bonding layer can be applied using one hand. The EVA primary
handle, held in either hand, also contains the on/off and ft_

control for the unit. Two pounds of force applied to the

. 4-II
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tr gger opens the flov and a deflection of 15 degrees produces a
maximum flow race. Spring force decreases or turns off the flow
as the EVA cre_n releases grip force.

Additional stability during ablator application is available .!
using an opClonal second hand guide handle, which is EVA attach-
able (snap on/off) co either side at right angles Co the primary
handle. Placing the second handle close to the primary handle
minimizes the distance between hands, maximizing efficient use
within the two-hand reach envelope. The second hand guide as-
s/st is stowed as a tool using the EMU mlniwork station tool
caddy concept.

The end nozzle is flared to provide an assist in spreading the
cure-ln-place ablator material as well as a clean cutoff capa-
bility. The nozzle is extended at an angle co provide maximu_
visibility to the EVA crewman and extension to the bottom of a
4-inch cavity.

The usable volume of 162.5 in.3 provides the capability to
fill a volume equivalent to 2 1/4 tiles of the 6x6x2-inch size
or one-half of an 18x36-inch area when used with precured blocks.

The features of the self-contained unxt have changed since the
midterm review, from the functional mockup Co recommended de-
sign. These features ere summarized iv Table 4-11.

Table 4-12 Sel _-Cont_ined Unit Design. Progress

Midterm/ Functional Recommended
EnvelopeMockup Mockup Design

Size . ;4in. ODxZSin. Loncj 4.25in. ODx_in. Lonoj .Sin. ODx._in. Lon(j
Weiqht(Loaded) 8.3 Ib 6,9 Ib l& 0 Ib
UseableVolume login.3 }2 in.3 (68in._} ]62..Sin.}
OperatincjOrientationHorizontal Vertical Vertic'il
oneHandOperation No YeS Yes
CatalystDispensing EntireLength EntireLength EntireLength

Pressurt,Injection Housin9Fracture HousingFracture
Mixin(jDesign Paddles PaddleswithWipers PaddleswithWipers
MixingMethod Optional---- Primary _ Primary

- HandCrankwith - GearMotor/Battery - GearMotor/Battery
Handle Backup Oackup

- GearMotor/ - HandCrankwithKnob - HandCrankwithKnob

Battery .
Mixingtime" 3 min 3 rain 3 mln
2ndHandGuide OneSide,Required OneSide,Required EitherSide,Optio_l

EVASnapOn/Off EVASnipOn/Off EVASnipOn/Off
FlowControl t0° Rotation 10° Rotation I.S_ TriggerPull

2ndHandGuide 2ndHandGuide PrimaryHandle

FlowRate NoPrediction 0-21in.31man 0-21in.31rain
at }0 psi at 30psi

Spreaderand FlaredNozzle FlaredNozzle F_lredNozzle
CleanCutOff

4-12
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4.3.2 Three-Part Unit

After completing the mixing function, the EVA crewman will re-
move the mixing _sembly for the three-part unit and swing the
mixing holder device out of the way. The hose and one-hand ap-
plicator assembly will be removed frola the WR transport contain-
er and attached (EVA snap-on/off) to the forward end of the mix-
ing container. One turn of the pressurization cartridge punt-

cures it and applies pressure to the piston.

The cure-in-place ablator to fill a void or form a bonding layer
can be applied using one hand. The EVA handle, held in either

hand, also contains the on/off and flow control capability for

the unit. Two pounds of force applied to the trigger opens toe
flow and a deflection of 15 degrees produces a maximum flow

rate. Spring force decreases or turns off the flow as the EVA
crewman releases grip force.

The end nozzle is flared to assist in spreading the

cure-in-place ablator material as well as provide a clean cutoff
capability. The nozzle is extended at _n angle to provide max-

imum visibility to the EVA crewman and extension to the bottom

of a 4-inch cavity.

The usable volume of 390 in.3 p_ovides the capability to fil,
a volume equivalent to 5.4 tiles of the 6x6x2-inch size or one

18x3b-inch area when used with precured blocks

4.4 TOOLS

._ Four tools were defined to support repairs: (1)cavity prepara-
tion tool, (2_cavity preparation/trowel tool, (3)OML assess-
ment tool, and (4)the optional second hand assist handle tor
the self-contained unit. The JSC tool caddy concept developed
for the EVA contingency tools will be used for packaging, use
and stowage. Two tools per caddy and two caddies will be placed
on the EMU miniwork station.

4.5 EVA TIMELINE

Two preliminary timelines (Tables 4-12 and 4-13) were prepared

for the typical repair sites--three 6x6-inch tiles and an
Igx36-inch tile area. The tlmelines reflect the events at a

single repair site.

Several significant factors, primarily dependent on repair area
size and cure-in-place work life, that affect the validity of
these or future timelines are.

I) Inspection and preparation will not be known until the EVA
crewman arrives at the repair site;
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2) Usable cure-in-place volumes that can complete one-half Co
all of the worst-case repair areas can also complete multi-
ple areas where minimum damage exists, providing transla-
tions/attachments can be completed;

3) The rate of dispensing depends on flow rate selection and
visual/manipulative capabilities achieved by NR positioning;

4) Gel state assessments ui11 require th_ EVA crewman to sup-
pert a single repaired area. assess the last of multiple
repair sites or maintain/log samples of various repair sites.

TabT, e 4-12

Event Time_ine for Three-TiZe Specificati_,; Area (Worst Case)

EVENT Minute Minute

Position&AttachforThree-TileTaskArea Start
l. VisuallyInspectDamageArea& Surfaces 0. 5
2. Rer,_e LooseDebrisbyHand& Placein MWSTrashBag 0. 5
3. RemoveDamagedPortionswithEitherTool& Placein MWSI'rashBag.I2
4. SwingMixingHolderin Place(AttachedtoWorkRestraint) O.2
5. UnstowApplicator/MixerUnit & Placein Holder 0.5
6. AttachMixingOptionto Gun 0.2

a) Gearmotor,BatteryAssemblyMountedonMixingHolder
b) HandCrankTetheredonToolCaddy

7. _.lnlockPaddles&MixCure-in-PlaceUntilVisuallyAcceptable 3
8. RemoveMixingOptionfromUnit 0.2
9. RemoveUnit& AttachTethered2ndHandGuideionToolCaddy) G.2

10. SwingMixingHolderOutofWay u.2
CumulativeRepairTime 7..5

ll. Turn PressurizationCartridgeOneTurntoEnable O..S
12. ApplyCure-in-Place& Precured(A_Necessary)toFillVoid 12
13. AssessWhetherOMLIs ± 114in toAdjacentAreawithOMLTool l
14. SpreadCure-in-PlaceAs Required AsReq'd
15. ReassessOMLAsRequired AsReq'd

Proceedto2ndRepairSite If VolumeRemaining&WorkLifePermit --
]6. (VentUnit If RequiredforReentryStowage) TBD
17. Remove2nOHandGuide 0.2
18. StowUsedUnit O.5

CumulativeRepairTime 2]. 7
19. SupportRepairedAreaforSufficientTimetoAssessGelState P
20. AssessGelStatebyObservingWorkability ]

CumulativeRepairrime 27.?
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. Eabte 4-13
Event 'zimetine_br 18x36-in.SpeaificationArea (WoratCaae)

EVENT Minute Minute

Position&Attachfor ]st Portionof 18x36-in.TaskArea Start
_. ' ]. Visually InspectDamagedArea& Surwaces 0.5
i 2. RemoveLoose?ebrisbyHand& Placein MWSTrashBag 0.5

3. RemoveDomagedPortionsmithEitherTool& Placein MWS 2
TrashBag

4. SwingMixingHolderin Place(AttachedtoWorkRestraint) 0.2
5. UnstowApplicator/MixerUnit& Placein Holder 0.5
6. AttachMixingOptionto Gun 0.2

, a) Gearmntor/BatteryAssemblyMountedon MixingHolder
b) HandCrankTetheredonToolCaddy

,_ , 7. UnlockPaddles& MixCure-In-PlaceUntilVisuallyAcceptable 3
8. RemoveMixingOptionfromGun 0.2

+ 9. RemoveUni! &AttachTethered2r:dHandGuide(onToolCaddy) 0.2
" 10. SwingMixingHolderOutofWay 0.2

,_ ?umulativeRepairTime 7.5
11. [urn PressurizationCartridgeOneTurn toEnable 0.5

• 12. Apply0.2-in. BondLayerof Cure-in-PlacetoTaskArea 5
_ ]3. UnstowPrecuredBlocks& Placein Void 3

14. ApplyCure-in-PlacetoFiliGaps&Form2ndO.2-in.BondLayer 5
]5. UnstowPrecuredBlocks& Placein Void 3
16. ApplyCure-in-PlacetoFill RemainingGaps 3

' CumulativeRepairTin,_ 27.0
' ]7. AssessWhetherOMLIs + 1/4in. toAdlacentAreawith OMLTool ]
' ]8. PushDownPrecuredBlocksAs Required As Req'd

19. SpredCure-in-PlaceAs Required As Req'd
20. ReassessOML_'_;Required As Req'd
21. (VentGun It RequiredforReentryStowage) TBD
22. Remove2ndHandGuide 0.2
2:1.StowUsedUnd 0.5

CumulativeRepairTime 28.l
' Detach,RepcsitionP.Attachfor2ndPortionof 18x36-in.TaskArea .S

RepeatStepsI thru 23Above 28.7
AssessGelStatebyObservingWorkability
CumulativeRepa:rTiCe _8.4
CumulativeSiteTime 63.4

Three-PartUnitConceptDelta

, Eliminate2ndMixing(Steps4 thru ]]) _ 5.O>CumulativeRepairTitre 53.4
" CumulativeSiteTime 58.4

t
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5.0 PACKAGING DEFINITION (CCNTAINERS AND ELEMENTS)

5.1 REQUIREMENTS

The major requirements include:

I) Any necessary catalyst or hardener must be mixed with the

base ablation polymer and the mixed material extruded into

the repair area;

2) Must be designed for use by suited crewmember;

3) Must be functional in vacuum conditions;

4) Must not obscure crewmembers' view of cavity;

5) Must provide variable and controllable flow rates;

6) Have clean cutoff characteristics;

7) Must be functional in temperature range of 40 to 125OF;

8) Must be designed so crewmember and equipment are not
contaminated with repair material;

9) Must maintain repair materials and equipment in optimum

working temperature range throughout repair;

i0) Have self-contained unit concept and a three-part unit

concept;

Ii) The minimum cure-in-place ablator volume must be 1080 in.3

per kit.

The container must:

I) Provide adequate environment and storage for all repair

materials;

2) Have a maximum volume of 12 ft.3;

3) Have a maximum weight when loaded of 300 Ib;

4) Incorporate a package compatible with the reach capability
of a suited crewmember;

5) Provide the restraints necessary for zero-g use;

6) Incorporate heaters able to maintain repair materials at

optimum working temperature;

7) Have a thermal blanket configuration the same as the multi-

layer insulation used for the orbiter payluad bay;
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8) Have heaters with an on/off control switch in the orbiter

crew compartment and dual monitoring instrumentation to the

crew compartment and telemetry to the ground;

9) The minimum precured ablator volume must be 6480 in.3 per
kit.

The TPS flight repair kit interface requirements are:

I) Use Shuttle payload bay environments defined in JSC 07700

Volume XIV of the 5pace Shuttle Payload Acconm_odatiou;

2) Use Ther_ml entry environments defined in Space Shuttle

Orbiter Entry Aerodynamic Heating Data Book SD73-SH-OI84,
Rev C, Book l, October 1978;

3) Stowage container to ancillary equipment stowage assembly
(AESA),

' a) Electrical,
b) Instrumentation,

c) Mechanical ann structural;

4) Repair kit items to work restraint transport container;

5) Tools to EMU miniwork station;

6) TPS repair kit to vertical installation common ground
• handling equipment.

5.2 APPLICATOR/MIXER BASELINE DESIGNS

5.2.1 Self-Contained Concept

The proper size and number of applicator/mixers was selected by
trading off the EVA handling and time constraints, the volume

limitations for the assembly, and the astronaut evaluations in

zero-g aircraft. The baseline size applicator/mixer selected is
shown in Figure 5-1. This concept is sized for eight units
packaged in the TPS repair kit container. The unit is loaded
with 185 in.3 of MA 25S material, while the usable ablator is
162.5 in.3. The total usable curt-in-place ablator in the kit
is 1300 in.3.

The self-contained applicator/mixer concept as shown in Figure
5-2 is a 5-inch-diameter (outer moldline), 20-inch-long unit.

The mixing paddles are a foldable configuration that collapses
with the expulsion piston shown. The catalyst tube shown within

the ablator reservoir is a glass tube with A I100 catalyst along
with ferric oxide in a carrier loaded within and sealed. The

glass tube is supported at the ends by sockets with RTV bond-
shock absorber. The mixing paddles are locked in position to
prevent paddle rotation until the mixing operation is ini-
tiated. The cure-in-place ablator is mixed by snapping on the
flexible drive shaft on the battery-operated 8_armotor. The
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paddle lock is released and the drive motor turned on. The pad-

dles turn and break the thin-walled glass tube, which starts

mixing with a linear distribution of catalyst and ferric oxide.

: The exit port will contain a screen to prevent large pieces (1/4

in.) of glass from plugging the outlets. The mixing is com-

pleted in approximately 3 minutes. The gearmotor is turned off
and the drive shaft released.

FlaredNozzleSpreader //_ - UsableVolume• 162.5in. I- EstimatedWeight(Loaded)- ]3 IbI

- Size- 5in. ODx20in. Long J

Handle Handle

--- ontrol

Knurl )._ hamber

Pressur.__.. j EVAMixing

&Battery ', Cartridge V _, _ .../_Handle
Chamber _
TwoMixingCapabilities J

Figure 5-I Self-Contained Unit

Nozzle

\_'_ FlowControl I /
/t/_ Valve !_ ,

CO2Cartridge.-_ ( FIo_,ControlHandle, (Trigger-Operated)
k

_,_ ExpulsionPiston I

' .._"- DriveShaft _';i

Figure 5-2
Applieato_/Mixer Baseline, Se_f-Contained Unit
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The ablator expulsion system is a piston driven by CO2 gas.
The gas is contained in a separate cartridge that is turned one
rotation to pierce the seal and pressurize the reservoir behind
the piston. The forward handle contains the handgrip trigger
that controls the flow race. The rate is continuously variable
from full off to full on. The exit port in the forward appli-
cator/mixer cap is offset from the centerline by 0.85 inch,

which allows the paddle shaft to be mounted in the forward cap.
The burst diaphragm is shown in Figure 5-2. This diaphragm is

burst by the pressure and allows the flow to proceed along the
exit tube, which bends 75 degrees away from the handle side. A
2 i/2-inch wide nozzle with a 0.20-inch slot opening is the

exit. The nozzle and handle arrangement allows good EVA han-

dling and visibility to the nozzle application area by the as-
tronaut. Two-hand operation is possible by use of a snap-on

handle that can be snapped on either side for left- or right-
handed operation. One-hand operation is useful for long reach

areas to the left or right.

A backup mixing operation is possible by a hand crank tool that

takes longer to accomplish complete mixing.

The weight statement for the self-contained concept is shown in
Tabte 5-1. The expulsion time is shown in Figure 5-3.

Table5-1
Applicator Self-Contained

WeightStatement

Item Weigl_t,Ib

HandFlowControlAs_,embly 1.72
Cylruder 2.30
ForwardCap 0. 78
Aft Cap 0. 77
ControlValve O.]8
Nozzle O.]9
ExpulsionOlapt_racjm 0.3]
MzxingPaddles O.27
Shaft & Fitting 0.27
PneumaticCylinder O.40

Contingency,tO'X, O.72

Dry Weight 7.86

Unusable O.56
UsableAblator 4.6]

LoadedWeight 13.03

Figure 5-3
ExpulsionTithe,Self-ContainedUnLt

12

Time, 8minutes

6 _ Open

4

2

0 I _ I.... L ..... -_ .... _ --J-
20 40 60 80 lO0 120 140 lO0

3
Volume, in.
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. 5.2.2 Three-Part Concept

The three-part concept is made up of a mixing container, 1.5-

meter feedline and a one-hand-operated flow control application
unit with spreading nozzle, The mixing container is housed in
the MMU work restraint container during application by the one-

hand unit. The mixing container is similar in concept to the

self-contained mixer concept except for size. The three-part

concept is shown in Figures 5-4 and 5-5. The feedline snaps on

_ to the mixing container with a quick-disconnect fitting. Four
: mixing pots are contained in the TPS repair kit container as

well as four feedline hand applicator/spreader assemblies. The

mixing pots have a 7.75-1nch outside diameter and are I0.0

inches long. The usable ablator Is 390 in. 3 per ur.lt, or a
total of 1560 in.3.

_,_ery \ _ -.. ' "_,._. Handle
t TwoMixingCapabilities. I

F/_ure 5-4 Tbree-Par_ Un/t
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The one-hand applicator is small and easy to operate with a 3-
foot ong feedl;.ne coming up from the pot. The feedline ID is
0.75 inch and the resulting flow rate is illustrated in Figut'e
5-6. This is for the 3-foot long feedline plus the hand control
unit as shown in Figure 5-4.

- 20-

18- / '

16-

_ 14-

"s 12-

 'oii
8 ve Full Open

o _ _o I_o i_o zbo z_ _o 3_o 3_o4_
3

Volume of Cure-in-Place Ablat0r. in.

Figure 5-6 Expulsion Time_ T_ee-Part Concept

The operating pressure selected for the three-part concept is a
blowdo_m system operating from 48.5 to 59 psi and is supplied by
a CO2 cartridge,

The functional mockup of the self-contained unit was modified to
operate as the three-part concept by adding a 3-foot feedline
with a trigger flow control hand applicator unit.

The weight statement for the three-part concept applicator/mixer

unit is shown in Table 5-2. Expulsion time for the three-part
unit is shown in Figure 5-6.

Table 5-2

Applicator/Mixer Weight S _tement,

Three-Part Concept

Item Weight, Ib

Cylinder 6. 6

ForwardCap 4. 9
Aft Cap 5.0

HandControl I. 6._ ii
Nozzle 0.19
ExpulsionDiaphragm 0, 70
O-Rings O.04
Mixin9 Paddles O.57
CatalystHousing 0.0:1
Shaft O.55
Feedline 3.2
PneumaticCylinder I.5

Contingency (]0_) 2..S
Dry Weight 21.43

CO2 O.35
UnusableAblator 2.?.S
UsableAblator 11.06

LoadedWeight 4]. 6
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5.2.3 Design and Stress

The self-contained and three-part concepts ¢f the applicator/

• mixer are similar in o_eration. Mixing torque for the paddle

concept shown is low (e.g., 20 in.-ib for 60 rpm on the func-
tional mockup). The torque is transmitted to the paddles at
both the front and rear attachment connections.

,!• The mixing torque is within reason for the backup mode hand

iI crank operation. The hand crank tool is a 4.5-inch radius
direct-drive tool offering a 22.5-in.-ib torque capability with
a 5-1b hand force.

The gearmotor selected for the automixing mode is a TRW Globe

gearmotor with 77 in./Ib of torque at 50 rpm using an Eagle-

Pitcher silver-zinc battery.

The pressure expulsion system on the basel ne self-contained

concept uses a CO2 cartridge with a blowdown pressure system
operating from 150 to 15 psi.

The pressure expulsion system for the baseline development

three-part concept uses a CO2 cartridge with a blowdown pres-
sure operating from 485 to 59 psi.

All units subject to pressure are designed to a factor of safety

of 4 on yield strength.

5.2.4 Thermal Control

The thermal control criterion for the applicator/mixer is to

maintain the cure-in-place ablator material at a temperature

within a gel temperature range of 0 to 125OF. We assumed that

the applicator/mixer will be exposed directly to the space envi-
ronment for a period of up to I hour, which is the maximum gel

time requirement for the ablator. We also assumed that extra
applicator/mixers not being used for the immediate repair job

would be stored in an insulated storage box on the work plat-

form. Spare or extra applicators ceuld be exposed to the space
environment for up to the 6-hour maximum EVA period.

Since power is not readily available to heat the applicator/

mixer, the thermal control approach investigated was to deter-

mine whether the heat capacity of the units, combined with low

emittance/absorptance coatings, would be sufficient to limit the
transient temperature change to acceptable values. Several
transient thermal models were constructed to evaluate the ther-

mal response of various components of the applicator/mixer.

The most critical component is the one with the least heat ca-

pacity. Examination of both the self-contained and three-part

concepts indicated that the feedline of the three-part appli-
cator/mixer has the least thermal mass. Hot (full continuous
sun) and cold (-460OF) cases were considered. The transient

temperature response for these cases is shown in Figure 5-7.
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Wrapping aluminized mylar tape around the feedline limits the

temperature change of the feedline to _27OF for a l-hour EVA
time. Note that the hot and cold cases cause the same absolute

temperature change from the initial temperature. This led to
the selection of an average of the gel temperature limits [(0 +

125)/2 = 63OF] as a desired storage temperature in the payload

bay storage container. Use of an average temperature allows
the maximum temperature excursion for both the hot and cold EVA
design cases.

I_ ['N_e: I.F_llimwrapp_withalumlnizN Jmylar_: a • 0.15.@.0._. J

I 2.No_terialfl_ thm_hf_dllne(_rst_a_).J

I_ / HotCase:ContinuousSun

Tem_ture,OF

: 0 | l I I
_5 1.0 1.5 2.0

_A Time,hr

Figure 5-?

Transient Temperature Response to EVA
Thermal Extremes

: Other applicator/mixer components will experience a smaller tem-
] perature excursion for comparable EVA times because of their

greater thermal mass. This assumes of course that they are coy-
: ered with a suitable radiation coating, either in the form of

paint or pressure-sensitive films. The only exception would be
the transparent section of the cylinder of the self-contained
applicator/mixer. If a transparent cylinder is used, the ab-

i lator material will radiate heat at a much higher rate. The
] cooldown characteristics of the ablator for this situation were

analyzed assuming an ablator emissivity of 0.80. This analysis
: also required a knowledge of the thermal conductivity of the un-

cured MA 25S. An estimate of the uncured thermal conductivity

was made by a simple test. _he uncured material wac placed in a
3-inch diameter 6-inch high thin wall (0.01) steel can. The can

was then taken from a uniform room temperature condition nnd

placed in a freezer at 0OF. The transient response of a ther-
mocouple at the center of the material in the can was moni-
tored. A closed-form analytic solution for a cylinder suddenly
placed in a different temperature environment was then evaluated
to determine the Cher:_l conductivity required to match the
thermocouple data. A thermal conductivity of 0.04 Btu/ft-hOF
resulted. This is slightly lower than the 0.052 listed for the
original HA 25S with 652 resin at 60OF. As a result of this
test, the uncured HA 25S thermal conductivity was conservatively
assumed to be the same as for the cured material.
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: The results of the analysis are given in Figure 5-8. Both the

minimum and average temperatures are shown. A 1-hour exposure

causes a minimum temperature of OOF although the average tem-

peratuze is 30OF. Use of an opaque cylinder wall would reduce
this temperature drop by allowing the use of a lower emmittance

coating on the cylinder.

C01dCase-NoHeatInput
10_ - TransparentCylinderWall

-6"-0.8
- Tsink• -460OF

ff _ _'_ AverageMaterialTemperature

"Mini "_"

"" 0 Material_ "" _,.

j inuniTemper:ture __._) i I I I
0 0.5 1.0 1.5 2.0

EVATime,holJrs

2ig'z._e 5-8
Transient Temperature Response
of Ab_ator Material to EVA Cold Case

An additional analysis considered the temperature change in the

self-contained applicator/mixer when stored in a storage bag on
the work platform. It was assumed that the bag consisted of I0
alternating layers of aluminized mylar separated by dacron net.
It was also assumed that the bag was covered with a high-emis-
sivii'y (0.9) cloth cover to protect the mylar from tearing.
Figure 5-9 shows the temperature change for a cold case. Two
effective emissivities are shown, with the higher value of 0.04

considered to be a realistic design condition. The figure shows

that applicator/mixers stored in an insulated bag remain within
acceptable temperature limits during = full 6-hour EVA period.
As a result of the analyses conducted during Phase I, no major
thermal control problems are anticipaL.d for the applicator/
mixer.

TemperatureResponseofApplicator/Mixer_nInsulatedTransportContainerDuring
EV_Zxposure

80 - ColdCase(T$1nk. -460_F)
- MultHayerInsulation

I0 LayersAluminizedMylar Separatedby DacronNet

70

¢ett " O.02

50 DesignCurvefor
StorageBagswilh
Seams,Flaps,etc "_'¢eff" 004

40 _ I i i I I i
1 2 .4 4 ._ ,,

EVATime.hours

Figure 5-9 The_nal Control -Applioator/Mixer
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5.3 FUNCTIONAL MOCKUP

The functional mockup of the self-contained concept, as shown in
Figure 5-i0, was operated using a simulated catalyst glass tube
filled with ferric oxide in suspension with ablator material to
visually illustrate mixing action. The mixing test, using the
white ablator, showed good internal mixing of the ablator and
sin_lated catalyst with some surface areas on the transparent
cyclinder still showing white and red streaking. The mixing was
done by hand crank and the paddles rotated for 120 revolutions.
The expulsion of the ablator was done by air pressure with the
resultz.lg flow races shown in Figure 5-11. The n_ximum pressure
tested, 30 psi, yielded a flow rate of 21 in.3/min.

The functional raockup was used Co mix (with a motor) and dis-
pense actual csealyze¢ MA 25S. The unit incorporated a teflon
wiper on one side of the mixing paddles to increase mixing on
the cylinder sides. Due to the mockup-pecullar concept (not
contained in recommended design), some mixing is restricted in
the forward end. The mixed ab]ator was expelled through the
nozzle into four blocks (size 3x3xl in.). Data on the cured MA

25S are listed and indicate satisfmctory mixing of the ablator
and catalyst:

I) Gel time approximately 70 minutes;

2) First block 18-hr cure,

a) Shore A hardness 35-40,
b) Bond tension 51 psi;

3) Fourth block 18-hr cure,

a) Shore A hardness 35-40,
b) Bond tension 65 psi.

The functional mockup was modified to incorporate the three-part
concept by adding a 3-foot feedline to the exit of the appli-
cator/mixer unit and adding a hand flow control applicator unit
to the end of the feedline. The unit requires a pressure of I00
psi to deliver 21 in.3 per minute. The unit was demonstrated
up to a 90-psi expulsion pressure.

The mockup was delivered to NASA-JSC on November 19 and mixing
was demonstrated for NASA personnel. The unit wes left with
NASA for a KC-135 zero-g flight demonstration of ablator appli-
cation.
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5.4 STORAGE CONTAINER FOR REPAIR KIT BASELII_ Dv.SIGN

The repair kit storage container has a 12-fc3 volu_e and mea-
sures 22.0x25.0x37.7 inches overall. The conflgur_tton for
the a_plicator/mixer self-contained concept is shown in Figure
5-12. The eight unit.s are stored for individual access and re-
turn with the left door open. The u.its are hard-mounted to
forwar; and rear rails. Release of the forward restraint allows
the ua_ts to be removed one at a time and replaced after indi-
vidual use. The kit tools and mixin_ gearmotor/battery assem-
blies are mounted on the left door (inside) for easy access and
replacement. The right-hand door opens the esg-crste restraint
for all of the precurod ablator blocks packaged and color-coded
a_ to thickness sizes. The blocks are bagged as shown for
transfer to the HMUwork restraint transport container. The up-
per compartment is for the coating repair cans (provided by
NASA-JSC).

The doors are restrained open during unloading and loading oper-
atlons but are closed, using the magnetic latch only, during re-
pair operations.

The fisure illustrates a typical transfer bag of precured abla-
tot blocks showing teflon divider sheets to allow easy removal

' of individual blocks. The divider sheets are tacked to the rear
of the bag co prevent them from coming out. Each row of block
packages in the egg-crate divider are soft-restt._ined by a Vel-

: cro-attached strap to prevent the bags from drifting out. The
i bags have pull tabs and Velcro strips for restraint within the
:| caddy.
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The TPS repair kit container is attached to the ancillary equip-
nv'nt sukport assembly (^ESA) in the orbiter payload by four
bolts and is covezed vith lO-layer HLI rich a Goretex cover.
The attachment bolts are thermally isolated from the support

structure by thermal rashers. The box is actively heated by
seven strip heaters bonded Co the inner aluminum surfaces (one
per outer surface pills an additional one on the second door).
Thetmostats are moun_ed in the applicator/mlxer compartment.

; Figure 5-13 shovs the three-part concept mixing application "s-

tem storage container. The right-hand compart_,nt is unchangedfrom the previous storage container of Figure 5-12, but the ar-
rangement of the mixing pots and Eeedline-han(' control applica-
tor assemblies are unique to this concept. There are four mix-
ing pots and feedline applicator assemblies. The latter -re
mounted to the inside of the left door with the au=omix _=ar-

motor/battery a_semblies and tools as shown.

i
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The baseline structure uses a sandwich shell of bead-stiffened

outer panel spot-welded to an inner sheet of aluminum alloy.

The concept is illustrated in Figure 5-12. This construction

leaves the inner surfaces of the box smooth and clear for load-

ing TPS repair items. The panels are riveted to angles at the

edges, and there are special hard-restraint rails for the mixing

pots or units. The egg-crate divider for the precured ablator

block packages is a subassembly.

The doors are piano-hinged on the sides, with both hard latches

and magnetic soft latches u_ed for closure during TPS repair.

The hard latches are used before and after EVA repair cperations.

5.5 STORAGE KIT THERMAL CONTROL

The thermal control function of the storage container is to

maintain ablator material temperatures at their optimum working

condition. As noted in the previous section, a 63OF storage

temperature has been selected as optimum for our MA 25S cure-in-

place ablator material. The thermal control system required to

maintain this temperature is shown in Figure 5-14. It consists

of dually redundant adhesive-backed film heaters mounted on each

side and door of the storage container box. They are controlled

by dually redundant thermostats also located on each side and

door. The box is enclosed in multilayer insulation (MLI) con-

sisting of I0 layers of I/2-mil aluminized perforated mylar sep-

arated by dacron net. The outer and inner layers of the blan,,et

are covered with Gortex-Ortho fabric cloth. This cloth prevents

tearing of the mylar, and its low solar absorbtivity (0.18) re-

duces the temperature when exposed to the solar heat flux. It
also allows the use of Velcro fasteners for door insutation

overlap_ to minimize heat losses at blanket junctions. The

blanket , _nim zes the heat loss in the cold case and lengthens

_ the temperature response time when exposed to the sun.

/-- Adheswe-BackedCrossSecbon
_'/ _. / FilmHeaters ThroughBoxWall

S L ated0.Aumnum/

_ _)_ ._?!',._:> _ch Door __l!lil!"_ )

_, _. [.._eater_t._// /_ Dacron
_( _iI!__-_ Oortex--.r"--"_ Net
_ " (.,,.---_,_ult'dayer Ortho /

_,__/ i nsulat_onIMLII F,)br.,c /--Aluminized
Blanket Mylar

StorageBoxThermalControlColtonents j
L__ MLIOverlapat MartinMariettaPrevious,_rtin |

DoorEdgesand Part SpecNumber MariettaApplication]
L_tChArea Heater STMQ215 Viking.SCATHA]
- Fastenedwith Thermostat 3L.HU27 V:k',n;,5CATH._.|

Velcro MLI
- Tabbedfor - AluminizedSTMA_67 Viking.SCATHA,

EasyRemoval Mylar Skylau
- DacronNet STM985 Viking.SCATHA.

Skylab

Figure 5-14 Therma_ Control of Storage Container
i
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i The heaters require a total power input of I00 watts--75 watts
are lost through storage container external surfaces and 25
watts are lost through the container attachment points. The
latter loss is an estimate since the mounting interfaces have
not yet been established. The interface assumptions used for
this estimate are:

i) Orbiter mounting structure temperature = -215OF;

2) Total attachment surface area = 5 in.2;

3) I/2-in. thick attachment area isolator block;

4) Isolator block and washer thermal conductivity = 0.15 Btu
ft-hOF;

5) Five i/2-in. PteeL bolts with 1/16-in. thermal isolator
washers.

: The 75-watt loss through the container surfaces was based on an
effective MLI blanket emissivity of 0.04. This value has been
established from flight measurements of similar MLI configura-

• tions on Viking and SCATHA and accounts for the deleterious ef-

fects of seams, joints, etc in relatively small insulated box-

type applications.

The design "hot condition" involves a long-term exposure to the

sun as well as 200OF temperatures on the payload bay liner.
Although the large heat capacity of the loaded storage container
will slow the temperature response to this environment, the de-

sired 63OF storage temperature could be exceeded during a

long-term exposure. However, the maximum 55-minute solar expo-

sures anticipated during the first Shuttle flights are not ex-

pected to significantly perturb this temperature. Once the at-
tachment interfaces have been defined, the "hot" and "cold" de-

sign conditions can be thermally analyzed. Results from the
"cold" analysis will allow selection of individual heater sizes

: for each side of the box. The results from the "hot" analysis
will provide the maximum allowable time for continuous solar ex-

posure. After this exposure time the orbiter attitude would

have to be changed.

5.6 TOOLS

5.6.1 Requirements

The major requirements include:

: I) Tools must be provided for surface preparation, spreading,
a_d outer moldline verification;

2) Must be tethered;

3) Must be compatible with EVA-suited crewmember;

• 5-16
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4) Have no sharp corners or edges and all corner radii must be

! 1/4in.;

5) Require no more than two tools for surface preparation.

5.6.2 Tool Baseline Design

The tools for the baseline concept are shown in Figures 5-15

through 5-18. The backup mixing mode hand crank is shown in
Figure 5-15. This is a 4.5-inch radius crank with a ball han-

dle. The unit snaps on the mixing shaft for manual cranking in
event of loss of automixing capability. The unit has a Velcro

strip as shown for soft restraint.

Hand Knob j1_
\

• ___j,_ Fitting

Tether Ring

Figure 5-15
Hand Crank Backup l_x Mode

Figure 5-16 shows the prying tool and multiuse trowel used as
required for preparing the TPS area for repair, smoothing the

repair (if required), and any general use such as aid in setting

the precured ablator tiles in place on the cure-in-place adhe-
sive.

Figure 5-17 illustrates an extensible moldline gage for checking

the required +0.25-inch requirement to outer moldline of the
existing TPS Files. The gage shows the limits at a glance.

Trash bags are included as tools for collecting large pieces of
tile debris during preparation of the area to be repaired.

Figure 5-18 shows the cavity preparation tool, which is a modi-
fication of a diver's prying tool.

5-17
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TetherRing

Figure 5-16
Cavity Preparation/TroweI

0.25 in._ _ _

Figure 5-17

Extensible Molding Gage

..i/"

Figure 5-I8
Cavity Preparation TooZ
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6.0 CONCLUSIONS

The conclusions reached in this contract are presented for the
various areas of effort:

i) Requirements - All requirements can be satisfied;

2) Materials, cure-in-place,

a) MA 25S Type III selected,
b) Compatible with RTV 560 and precured ablators,

c) 15-minute to l-.hour gel times can be obtained in the in
situ vacuum chamber.

d) Use of RTV 511 resin _as provided small variance in gel

time from 40 to 125OF and exhibits application flexi-
bility; no heater is required in applicator/mixer,

e) Use of RTV 511 resin has provided higher bond tension,

f) Acceptabl_ vicosity obtained for mixing and dispensing
materials (including vacuum),

g) Material can be made in situ vacuum chamber with essen-
tially no voids,

h) Plasma arc testing - All candidate Type III materlals

performed well and RTV 511 resin provided improved ther-

mal performance (less char, lower backface temperature
and less swelling),

i) In situ vacuum chamber vital to material evaluation;

3) Materials, precured,

a) SLA 56! selected,

b) SLA 561 performed well in plasma arc testing;

4) Flight thermal performance analysis - Both MA 25S Type III
and SLA 561 satisfy thermal performance;

5) Crew operations and repair approaches,

a) Development of work restraint must complement repair kit

transfer and site usage,

b) Applicator/mixer unit design feature_ _ere optimized for
E_A usage,

c) three thicknesses of precured ablator a e desired,

d) Crew EVA use requires maximum gel time;

6) Packaging definition,

a) Applicator/mixer unit, self-contained concept - 162.5

in.3 usable volume is near optimum £or repair task(s)
(size can be handled by EVA crewman and units are ccm-

patible with container packaging constraints),

b) Applicator/mixer unit, three-part concept - 390 in.3
usable volume is a size that can be p_ckaged (4 per kit)

and handled by EVA crewman,

c) Redundant mixing modes (hand crank and motor) are desir-
able and provided for,
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d) Several soft bag/modules containing mix of applicator/

mixer units, precured ablator, and coating spray cans

should be packed within the TPS repair kit container,
e) Tools will use Shuttle contingency tool caddy approach;

7) Functional mockup demonstration,

a) Mixing and expulsion systems are viable,
b) Flow rates are controllable by one hand and are variable

and shutoff is positive,

c) Side handle on self-contained unit creates an optional

concept with good EVA crew visibility to the applicator
nozzle,

d) Three-part concept utilizes a small one-hand control/

nozzle applicator,
e) Motorized mixing times of approximately 3 minutes are

achieved.
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